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Abstract

We estimate that passive investors held at least 37.8% of the US stock market
in 2020. This estimate is based on the closing volumes of index additions and
deletions on reconstitution days. 37.8% is more than double the widely accepted
previous value of 15%, which represents the combined holdings of all index funds.
What’s more, 37.8% is a lower bound. The true passive-ownership share for the
US stock market must be higher. This result suggests that index membership is the
single most important consideration when modeling investors’ portfolio choice. In
addition, existing models studying the rise of passive investing give no hint that
prior estimates for the passive-ownership share were 50% too small. The size of
this oversight restricts how useful these models can be for policymakers.
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1 Introduction
How much of the US stock market do passive investors own? We answer this

question using data about the closing volumes of index additions and deletions on
reconstitution day. Our approach allows us to estimate the ownership share of strict
end-of-day indexers—i.e., a subset of passive investors who mirror their chosen
benchmark at the end of each trading day. We find that strict end-of-day indexers who
are benchmarked to either the S&P 500 or the Russell 1000/2000 held 37.8% of the US
stock market in 2020 as shown by the right-most black dot in Figure 1.

According to the Investment Company Institute (ICI), index mutual funds and
exchange-traded funds (ETFs) owned 15% of the US stock market at year-end 2020
and 16% of the market at year-end 2021. Thus, our findings suggest that index funds
account for less than half of all passively invested money. The combined AUM of all
investment funds, both active and passive, amounts to 30% of the US stock market.
“Other investors—including hedge funds, pension funds, life insurance companies, and
individuals—[hold] the majority (70%). (ICI Fact Book, 2022)” Most passive investing
is directly indexed by this remaining 70%.
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Figure 1. Two methods for estimating the percent of the US stock market owned by
passive investors. Orange bars depict the ownership share of index funds as reported by
the Investment Company Institute each year from 2011 through 2021. Black dots depict
the implied ownership share of strict end-of-day indexers benchmarked to either the S&P
500 or the Russell 1000/2000 from 2011 through 2020. × mark depicts the implied
ownership share of just the subset of strict end-of-day indexers who are benchmarked to
the S&P 500 in 2021.
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Imagine a passive investor who religiously matches his portfolio weights to his
chosen benchmark (e.g., the S&P 500 or the Russell 1000) at market close each day. On
a day where this index adds one stock (ticker:ADD) and drops another (ticker:DROP),
our strict end-of-day indexer must rebalance his holdings immediately prior to close.
Suppose he manages a $1b portfolio. If ADD has an index weight of 0.05% after
reconstitution, this strict indexer will have to buy $500k worth of ADD shares at 4pm.

If there are also lots of other strict end-of-day indexers who behave just like this guy,
ADD will experience a spike in closing volume on reconstitution day. And that is exactly
what we observe in the data for index changers. Russell reconstitution day is now
“generally considered [to be] the single-biggest trading day in US markets.”1 And > 90%
of index-changer volume on reconstitution days gets executed at market close.

We convert the spike in volume at market close on reconstitution days into an
estimate for the total amount of money benchmarked to a particular index. Suppose
ADD’s closing price was $50 per share. In that case, the strict end-of-day indexer with
$1b in assets under management needed to buy (0.05% · $1b) / ($50 per share) = 10k

shares to match his benchmark’s weight. So, if ADD’s total realized volume at the close
was 104-times higher, 104 × 10k = 100m shares, then it stands to reason that there is
104-times more money strictly indexed, which amounts to 104 × $1b = $10t.

Because we start from trading-volume data rather than data on fund holdings, our
approach to estimating the passive-ownership share reflects both index-fund investors
and direct indexers. Put differently, 37.8% reflects the money held in the iShares Russell
1000 ETF (ticker:IWB) and the money held in state pension funds that are directly
indexed to the Russell 1000. This is how our 37.8% estimate for the passive-ownership
share in 2020 can be more than double the previous estimate.

Yet, 37.8% is almost certainly too low. To ensure that the trading volume we
analyze comes from index rebalancing, we narrowly focus on just the trading volume
experienced by adds and drops right at market close on reconstitution days. But not all
passive investors are strict end-of-day indexers. In principle, some passive investors
could rebalance more slowly. And our approach does not reflect the holdings of these
more relaxed passive investors. This is one reason why 37.8% is a lower bound.

1Rolf Agather, managing director of North America research for FTSE/Russell, as quoted by Victor
Reklaitis in “Why Friday could be the year’s biggest trading day.” MarketWatch. Jun 26, 2015.
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Another reason is that it only reflects the holdings of strict end-of-day indexers who
are benchmarked to either the S&P 500, the Russell 1000, or the Russell 2000. While
these are important indexes, they are not the only indexes. The holdings of a strict
end-of-day indexer who is benchmarked to the Nasdaq 100, for example, is not captured
by our 37.8% headline number.2

There are two important takeaways from our analysis. The first is the magnitude of
our main result. We estimate that passive investors own at least 37.8% of the US stock
market. This is a massive number. It is more than double the widely accepted previous
value of 15% at year-end 2020. The × mark in Figure 1 indicates that the subset of strict
end-of-day indexers benchmarked to the S&P 500 owned more of the US stock market
in 2021 (22.9%) than all index funds combined (16%).

These numbers imply that index inclusion is the single most important consideration
when modeling portfolio holdings. As a point of comparison, note that Balasubramaniam,
Campbell, Ramadorai, and Ranish (2022) find that all other investor- and stock-level
characteristics combined only explain 4.0% of the variation in households’ portfolio
holdings. In other words, when trying to explain who holds what and why, index
inclusion has an order of magnitude more explanatory power than all the other things
that usually show up in our favorite asset-pricing models.

Passive investors are an important part of modern financial markets. Financial
economists should care about the percent of the US stock market that is owned by
passive investors for the same reasons that rain forest ecologists care about the relative
biomass of insects in the canopy. These aggregate numbers matter. We need to get them
right. That is just good science. Think about how different the macro-finance literature
would look today if Mehra and Prescott (1985) had estimated an equity premium that
was half as large—i.e., 4% rather than 8% per year.

The second important takeaway is methodological. The rise of passive investing has
been one of the most talked about developments in financial markets. And this public
discussion has triggered a tsunami of theoretical research.3 These models make clear

2We would love to include passive investors benchmarked to other indexes in our calculations as well.
However, the reconstitution timing of the Nasdaq 100 and similar indexes makes this difficult. The
Nasdaq 100 reconstitutes once a year at market close on the third Friday in December. This timing
coincides with the quadruple witching date. See Section 3 for further details.

3Here is a partial list of publications and working papers from just the past two years: Baruch and Zhang
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predictions about how a doubling of the passive-ownership share should transform
financial markets in economically meaningful ways. Yet, when researchers took these
models to the data, they were using numbers for the US passive-ownership share that
were 50% too small. We think it is noteworthy that no one noticed the problem.

All the papers in this literature are built on the same underlying logic. Suppose
Alice starts out as an active investor who searches out and trades on news about firm
fundamentals. If Alice becomes a passive investor, then she will stop doing these things.
As a result, any information that Alice alone would have uncovered will no longer get
incorporated into prices. Hence, prices will become slightly less informative about firm
fundamentals after Alice’s active-to-passive conversion.

One possible interpretation of our results is that this is the wrong way to think about
passive investing. Perhaps researchers should not associate passive investing with
uninformed traders in a Grossman and Stiglitz (1980)-type model. After all, State Street
pays S&P Dow Jones billions of dollars for information about index membership (An,
Benetton, and Song, 2022). Perhaps passive investors are just paying for and trading on a
different kind of information.

Another possible interpretation is that existing theoretical models are correct but
incomplete. Holding all else equal, the logic outlined above could hold for each new
passive investor. But this is under the assumption that everything else is equal. And
all else is never equal. So perhaps researchers should search for a new economic
consideration that matters to market participants but is missing from existing models.4

We view the fact that most passive investing is done via direct indexing as a natural
starting point for this search.

Regardless of which interpretation you prefer, new methods are clearly needed when
it comes to modeling the rise of passive investing. Existing models are not precise
enough to recognize that the US passive-ownership share was off by a factor of two. The
size of this blind spot poses a real problem for anyone trying to use these models to
make policy decisions.5

(2021), Bond and García (2022), Buss and Sundaresan (2021), Chabakauri and Rytchkov (2021), Coles,
Heath, and Ringgenberg (2022), Glosten, Nallareddy, and Zou (2021), and Lee (2021).

4An effective new drug can appear ineffective in clinical trials if doctors break protocol and systematically
give it to their sickest patients. For financial theorists, the challenge would be to find the analog to the
omitted variable, “severity of illness”, when studying the rise of passive investing.

5Climate models make clear predictions about the sorts of bad future outcomes we can expect if global
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1.1 Paper Outline

We begin our analysis in Section 2 by outlining our methodology. Then, in Section 3,
we describe the data we use when applying this methodology to real-world financial
markets. Section 4 contains our estimates for the share of the US stock market owned
by passive investors. In Section 5, we examine how prices and liquidity change on
reconstitution days. Section 6 discusses the broader implications of our main finding.

1.2 Related Literature

This paper borrows from and builds on several strands of related literature. First,
there is the theoretical literature mentioned above, which studies the equilibrium effects
of passive ownership on price informativeness and investor welfare. We find that
previous estimates for the passive-ownership share in the US stock market were at least
50% too low. Yet the models in this literature gave predictions that were too imprecise to
recognize it. This suggests that something is missing from our current theoretical
understanding of how passive investing affects financial markets. It also underscores the
utility of being able to estimate the effect of passive ownership on price informativeness
in a relatively model-independent way (Sammon, 2022).

In addition to equilibrium effects, there are numerous direct effects of index-linked
investing (Wurgler, 2011). Harris and Gurel (1986), Beneish and Gardner (1995), Beneish
and Whaley (1996), Kaul, Mehrotra, and Morck (2000), Wurgler and Zhuravskaya
(2002), and Kashyap, Kovrijnykh, Li, and Pavlova (2021) look at the effect of index
additions/deletions on prices. Madhavan (2003) studies the price effect for stocks added
to the Russell 3000. Other papers look at the effect of index additions/deletions on return
attributes such as correlations and liquidity (Barberis, Shleifer, and Wurgler, 2005;
Greenwood, 2008; Baker, Bradley, and Wurgler, 2011; Chang, Hong, and Liskovich,
2015; Burnham, Gakidis, and Wurgler, 2018; Brogaard, Ringgenberg, and Sovich, 2019).
Our analysis suggests that, when analyzing these effects, researchers should consider
trading by both index funds and direct indexers.

average temperatures were to rise by x◦. “It is likely that the percentage of species at high risk of
extinction will be 9% at 1.5◦C, 10% at 2◦C, 12% at 3.0◦C, 13% at 4◦C, and 15% at 5◦C (Pörtner et al.,
2022)” So, if we were to find out tomorrow that scientists had been accidentally underestimating the
global average temperature changes by, say, 6◦C for the past few years, then we would need to reevaluate
these models. One out of every six species has not recently gone missing.
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The ETF industry has experienced explosive growth over the past decade (Madhavan,
2016; Lettau and Madhavan, 2018). Many people believe that ETFs can distort the
pricing of the assets that it holds. And several recent papers have provided evidence
consistent with this hypothesis (Ben-David, Franzoni, and Moussawi, 2018; Da and
Shive, 2018; Chinco and Fos, 2021). The effect sizes in these papers are large given that
ETFs hold a relative small fraction of the US stock market (ICI Fact Book, 2022). We
reconcile this inconsistency by documenting the existence of a large group of strict
end-of-day indexers who trade like ETFs during reconstitution events.

Our work is connected to a related literature studying the distinction between active
and passive investing. Sometimes active funds can trade like passive investors. Pavlova
and Sikorskaya (2022) gives evidence that active funds trade more than you would
expect in response to index reconstitutions. We show that direct indexers hold at least as
much money as index funds. The combined effect of these two forces can produce
extremely inelastic demand for index switchers on reconstitution day. This observation is
related to Gabaix and Koijen (2022)’s inelastic market hypothesis.

Other researchers have pointed out that there is a minimum level of trading activity
that even “passive” investors must engage in. And this minimum level is surprising high
(Pedersen, 2018; Easley, Michayluk, O’Hara, and Tālis, 2021). It is also true that ETFs
are some of the most actively traded assets in modern financial markets, and much
of this trading activity comes from institutional investors (Robertson, 2019; Huang,
O’Hara, and Zhong, 2021). Industry surveys regularly find that institutional investors
are replacing index-futures positions with analogous positions in ETFs (Greenwich
Associates, 2016). We view these findings as interesting but orthogonal to our analysis.
We are estimating the ownership share of all passive investors. How much do these
investors trade in aggregate? Who buys shares in index funds? These are interesting
questions, but they are outside the scope of this paper.

Finally, this paper adds to the forensic-economics literature (Zitzewitz, 2012;
Ljungqvist, Malloy, and Marston, 2009; Piskorski, Seru, and Witkin, 2015). When
confronted with past errors, researchers usually respond by pushing for better reporting
standards and data transparency. And we strongly support this prescription (Chen and
Zimmermann, 2021). However, in this paper, we also build on the insight in Chinco
(2022): unrecognized errors can inform model development going forward.
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2 Methodology
This section outlines how we estimate the passive-ownership share for the US stock

market by studying the volume experienced by index changers at market close on
reconstitution day. We start by describing how we would approach the problem in an
idealized setting where we could directly observe the rebalancing volume coming from
passive investors (Subsection 2.1). We then discuss practical concerns that arise when
implementing this thought experiment using real-world data (Subsection 2.2). Finally,
we outline how we quantify the size of the resulting estimation errors (Subsection 2.3).

2.1 Thought Experiment

We are interested in determining the amount of money benchmarked to a specific
value-weighted index, such as the S&P 500, the Russell 1000, or the Russell 2000. Once
we can do this for one index, we can do the same thing for several of them and add up
the results. Suppose that we could directly observe the rebalancing volume coming from
passive investors, RebalVolume, whenever this index reconstitutes. In this subsection,
we describe how it would then be possible to accomplish our goal.

Index Construction

In popular value-weighted benchmarks, such as the S&P 500 and the Russell, the
index weights are float adjusted. Suppose that there are N ≥ 2 stocks in an index,
n ∈ {1, 2, . . . ,N}. Let FracCloselyHeldn denote the fraction of the nth stock’s shares
that are held by officers and directors, another publicly traded company, employee
benefits programs, government entities including sovereign wealth funds, or individuals
with a ≥ 5% stake in the company. The number of tradable shares for stock n is thus:

#Tradablen = #Sharesn × (1 − FracCloselyHeldn) (1)

The market capitalization of an index is the total value of all tradable shares for the
constituent stocks:

IndexCap =

N∑
n=1

Pricen · #Tradablen (2)
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Pricen denotes the nth firm’s price per share at market close. The weight of the nth stock
in the index corresponds to its share of the index’s overall market capitalization:

IndexWeightn =

(
Pricen · #Tradablen

IndexCap

)
(3)

Note that the level of the S&P 500 and the Russell 1000/2000 is not the raw market
capitalization. It is a scaled version of this number:

IndexLevel =
IndexCap
Divisor

(4)

The scaling factor, Divisor, is chosen each period to adjust for changes in index
capitalization due to reconstitutions. If the scaling factor did not adjust following
reconstitution, then an index’s level would mechanically change following reconstitution
if the added stock had a larger market cap.

Total AUM Indexed

Suppose that the benchmark index reconstitutes. At the end of trading today, one
stock will get added to the index (ticker:ADD) and another will be dropped (ticker:DROP).
Let RebalVolumeADD denote the amount of rebalancing activity experienced by ADD
coming from passive investors who are benchmarked to the index as a result of
reconstitution. For the thought experiment in this subsection, we are imagining that we
can directly observe this quantity.

Reconstitution involves a change. So we need to consider two different time periods.
We will use Before to indicate calculations made immediately prior to reconstitution
when DROP is still part of the index. Think about these calculations as taking place at
3:59pm on reconstitution day. Likewise, we will use After to indicate calculations made
immediately following reconstitution when ADD has been added to the index. Think
about these as taking place at 4:01pm on reconstitution day.

Immediately prior to reconstitution, ADD had an index weight of 0%:

IndexWeightBefore
ADD = 0 (5a)

IndexWeightAfter
ADD =

(
PriceADD · #TradableADD

IndexCapAfter

)
(5b)
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Let IndexWeightAfter
ADD denote ADD’s weight in the index immediately after being added

with |∆IndexWeightADD| =
∣∣∣IndexWeightAfter

ADD − IndexWeightBefore
ADD

∣∣∣ = IndexWeightAfter
ADD.

The total dollar value of the reconstitution-day rebalancing volume experienced by
ADD is RebalVolumeADD × PriceADD. So, to account for all the rebalancing activity
coming from passive investors, we must have:

known in thought exp
RebalVolumeADD ×

observed
PriceADD︸                                 ︷︷                                 ︸

total dollar value of obs-
erved rebalancing volume

=
observed

|∆IndexWeightADD|︸                  ︷︷                  ︸
required dollar value of

rebalancing per $1 AUM

× unknown
AUMindexed (6)

This is an accounting identity. It states that the observed rebalancing volume must be
equal to the required amount of rebalancing.

The key observation is that three of the four variables in this accounting identity are
observable in this thought experiment. And that makes it possible to estimate the
fourth unobservable object: the total amount of money benchmarked to the index,
AUMindexed. Solving for this variable, we get:

AUMindexed
:

ADD ← IndexCapAfter ×
(
RebalVolumeADD

#TradableADD

)
(7)

We write AUMindexed
:

ADD rather than AUMindexedADD to indicate that we are working
with an implied value based on this accounting identity. We write AUMindexed

:
ADD

rather than AUMindexed
:

to emphasize that this implied value is based on the rebalancing
volume observed for a single stock. The value implied by DROP should be the same.

2.2 Real-World Concerns

Now that we have an idea of how our estimation strategy would work in an ideal
setting, we can discuss some of the problems that might arise when implementing it
using real-world data. IndexCap and #Tradablen are directly observable. Most of the
difficulties lie in computing RebalVolumen. Not all trading activity on reconstitution day
comes from passive investors, and passive investors sometimes trade before or after
reconstitution day.

To address these issues, we exploit an underappreciated fact about rebalancing in
response to reconstitution events: most of this trading activity is prepositioned well in
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advance and occurs right at market close (Li, 2022; Madhavan, Ribando, and Udevbulu,
2022). Initially, financial intermediaries set up these prepositioned trades for ETFs due
to tax considerations. But now lots of passive investors do this. Thus, by focusing our
attention on closing volumes, we can capture the rebalancing volume coming from a
subset of passive investors, which we call “strict end-of-day indexers”.

There are other reasons why trading volume might be high at the close. For example,
the third Friday of March, June, September, and December are triple witching days when
single-stock options, index options, and index futures all expire at the same time. On
these days, there is high closing volume for reasons unrelated to any reconstitution
events. This limits the number of benchmark indexes we can use in our analysis. Many
indexes, such as the Nasdaq 100, always reconstitute on witching days. The Russell
never does, and the S&P 500 frequently reconstitutes on non-witching days.

We restrict our analysis to only consider a subset of passive investors (strict
end-of-day indexers) who are benchmarked to a subset of all indexes (the ones which
reconstitute on non-witching days). These two restrictions imply that any estimates
produced by our approach will represent lower bounds for the true passive-ownership
share. Moreover, it is entirely plausible that these restrictions could lead to estimates that
are lower than the ones produced using index-fund holdings.

So far, we have covered reasons why some of the trading on reconstitution days
might not come from passive investors. We also need to consider reasons why all passive
investors might not rebalance on reconstitution day. This can occur whenever a stock is
added or dropped from an index for reasons other than market-cap changes. For example,
if a company gets dropped from the S&P 500 because it was acquired, the official date of
the drop may occur after the acquisition is finalized. In which case, some passive
investors may be forced to divest in the company early. For this reason, we will focus
our attention on index additions and deletions that are solely due to market-cap changes.

Last but not least, the number of tradable shares may be very different from total
shares outstanding. Think about a stock where the founder retains a large stake (e.g.,
Tesla). Since #Tradablen shows up in the denominator, mistakenly using #Sharesn for
these sorts of firms will result in large errors. This is just one reason why replicating
index weights is a non-trivial task. We will return to this observation in Section 6 when
discussing the broader implications of our results.
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2.3 Error Assessment

When we take our estimation strategy to the data, we take steps to ameliorate the
various concerns outlined above. But how can we know if these steps were successful?
We exploit the fact that additions and deletions should yield the same result

AUMindexed = AUMindexed
:

ADD = AUMindexed
:

DROP (8)

to assess the size of our remaining errors.
Let IndexWeightBefore

DROP denote DROP’s weight in the benchmark index immediately
before reconstitution:

IndexWeightBefore
DROP =

(
PriceDROP · #TradableDROP

IndexCapBefore

)
(9a)

IndexWeightAfter
DROP = 0 (9b)

Right after reconstitution, the index allocates 0% of its portfolio to DROP.
Using the same accounting identity as before, we get:

known in thought exp
RebalVolumeDROP ×

observed
PriceDROP︸                                   ︷︷                                   ︸

total dollar value of obs-
erved rebalancing volume

=
observed

|∆IndexWeightDROP|︸                   ︷︷                   ︸
required dollar value of

rebalancing per $1 AUM

× unknown
AUMindexed (10)

Setting |∆IndexWeightDROP| = IndexWeightBefore
DROP and solving for AUMindexed yields:

AUMindexed
:

DROP ← IndexCapBefore ×
(
RebalVolumeDROP

#TradableDROP

)
(11)

Equations (7) and (11) both give the same basic recipe. To estimate the total amount of
money indexed, first compute the fraction of tradable shares that were exchanged by
passive investors. Then multiply the total index capitalization by this fraction.

If we could estimate IndexCap, RebalVolumen, and #Tradablen perfectly for every
index switcher, Equation (8) would hold exactly. But errors in any of these empirical
objects will generate slight discrepancies. By examining how large these discrepancies
are, we can gauge the amount of noise in our estimation procedure.

11



3 Data
The previous section outlined our estimation strategy. In this section, we give an

overview of the data we use as inputs to this procedure. Subsection 3.1 gives details
about why we focus on S&P 500 and Russell reconstitutions. Subsection 3.2 describes
what rebalancing looks like in the days and weeks around reconstitution events.

3.1 Reconstitutions

Our analysis focuses on reconstitution events associated with the S&P 500 as well as
with the Russell 1000 and the Russell 2000 (the “Russell” for short). We now describe
these two reconstitution events in detail. We also discuss why we limit our analysis to
this pair of benchmark indexes.

S&P 500

The S&P 500 is a float-adjusted value-weighted index comprised of 500 large US
companies (S&P Dow Jones Indices, 2022). The index is maintained by S&P Dow Jones
Indices. All constituents of the S&P 500 are US companies that meet a minimum
market-cap requirement and have a float-adjusted market cap that is at least 50% of this
threshold. For example, in June 2022, the minimum market-cap threshold was $14.6b,
which means that a company must have $7.3b in publicly available shares.

In addition, at least 10% of each S&P 500 company’s shares must be publicly
available at all times. Companies are also required to maintain adequate levels of
liquidity and reasonable price levels. Prior to being added to the S&P 500, a company
must also have positive earnings in the most recent quarter as well as positive earnings
over the past four quarters when summed together.

Officially, the S&P 500 rebalances once a quarter on the third Friday in March, June,
September, and December. These dates exactly line up with the quarterly triple-witching
days. However, S&P 500 stocks can also be added and dropped from the index
throughout the quarter on an ad hoc basis at the discretion of the S&P Dow Jones Indices
committee. For example, on May 11 2020, Domino’s Pizza (ticker:DPZ) replaced
Capri Holdings (ticker:CPRI) in the S&P 500. We only use these sorts of intra-quarter
reconstitution events which are due to changes in market cap.
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Figure 2. Number of reconstitution events each year for the S&P 500 (left panel) and
the Russell 1000/2000 (right panel). Black numbers/thin bars denote all events. White
numbers/thick bars denote events used to estimate the passive-ownership share for the
US stock market. For the S&P 500, our data cover January 2011 through December
2021. For the Russell 1000/2000, our data cover January 2011 through December 2020.

S&P Dow Jones made 465 changes to the S&P 500 from January 2011 through
December 2021. These changes involved 235 additions to the index and 230 deletions. If
an existing S&P 500 firm adds a share class, no firm needs to be dropped from the
index. This is why there are more additions than deletions. S&P Dow Jones released
this information in 184 different announcements. Because 465 > 2 × 184, some
announcements included news about more than one stock being replaced.

Panel (a) in Table 1 provides a breakdown of the reasons given by S&P Dow Jones
for these changes. 185 of the 235 index additions were due to increases in market cap;
whereas, 101 of the 230 index deletions were due to decreases in market cap. We
exclude all other kinds of changes to the S&P 500 from our analysis. We cannot be sure
that the reconstitution date will be the relevant rebalancing date for passive investors in
these other cases. We further exclude any market-cap events that coincided with a
triple-witching day. This yields 149 usable S&P 500 events: 101 adds; 48 drops.

We give summary statistics for stocks that get added to or dropped from the S&P
500 in Panel (b) of Table 1. We report the number of shares and market cap of each stock
as of market close on reconstitution day. For index additions, we report the weight in the
S&P 500 immediately after being added; for deletions, we report the weight immediately
prior to being dropped. Average daily volume and cumulative returns over the past year
are computed using trading days {trecon − 22, . . . , trecon − 250}.
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S&P 500 reconstitution events

Panel a) Add Drop

Market cap increase 185 Acquired by other firm 104

New firm created by spin off 21 Market cap decrease 101
Name change 15 Name change 14

New firm created via merger/acquisition 10 Too small after spin off 9
New share class 6 Other 4

Total 235 Total 230

Panel b) All Add Drop
Avg Sd Avg Sd Avg Sd

log10(#Shares) 8.1 0.4 8.1 0.4 8.2 0.3
log10(MarketCap) 9.9 0.4 10.2 0.3 9.5 0.3
IndexWeight [bps] 6.5 6.5 8.6 6.6 2.3 3.5
log10(AvgVolume) 6.2 0.5 6.0 0.5 6.4 0.4

PastReturn [%] 27.8 62.5 52.3 59.2 −23.7 29.3

149 101 48

Table 1. Panel (a) classifies the reasons given by S&P Dow Jones for each of the 465
additions to and deletions from the S&P 500 index over the period from January 2011
through December 2021. When estimating the passive-ownership share for the US stock
market, we only consider the 185 additions and 101 deletions due to market-cap changes.
And, among these 296 changes that we made due to market-cap reasons, we further
restrict our sample to the subset of 101 additions and 48 deletions that did not occur on a
triple-witching day, leaving 149 S&P 500 events in total. Panel (b) reports summary
statistics for the companies involved in these 149 events. Market caps and index weights
are computed after reconstitution for additions and before reconstitution for deletions.
Average daily volume and returns over the past year are computed using trading days
{trecon − 22, . . . , trecon − 250}.
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S&P Dow Jones strategically chooses which companies to add to the index based on
a variety of factors including industry composition and firm characteristics. Our analysis
does not rely on the assumption that the firm being added is similar to the firm being
dropped. We are studying how the trading volume of each of these two firms behaves in
the time period around reconstitution.

Russell

The Russell 1000 and the Russell 2000 are both float-adjusted value-weighted
indexes like the S&P 500. Both indexes are maintained by FTSE Russell. The Russell
1000 is comprised of 1000 largest stocks in the Russell 3000E universe, and the Russell
2000 contains the next 2000 largest stocks, which have rankings 1001:3000 in the
Russell 3000E (FTSE Russell, 2022). Unlike the S&P 500, whose constituents are
chosen by committee, membership in the Russell 1000 and 2000 is largely rule based.

The entire Russell family of US-equity indexes reconstitutes on the last Friday
in June each year. Russell reconstitution day is the biggest trading day of the year.
“Let’s face it, for the New York Stock Exchange, Russell reconstitution, from a trading
standpoint, is the greatest show on earth, that’s where it all comes down.”6 FTSE Russell
announces roughly two weeks in advance which stocks will be added directly to the
Russell 1000 and 2000 as well as which stocks will switch between these two indexes.
FTSE Russell makes its ranking decisions in late May.

For the same reasons as discussed above with the S&P 500, we restrict our attention
to stocks that either a) get added directly to the Russell 1000/2000 or b) switch between
these two indexes. We do not use stocks that drop out of the Russell 1000/2000 entirely.
This group of stocks represents a group of firms which ceased to exist at some point
during the previous quarter. So there is no guarantee that passive investors will rebalance
their positions in these firms on reconstitution day. Many passive investors must divest
their positions in these stocks at the time when the company ceases to be.

FTSE Russell made 2,364 changes to the Russell 1000/2000 from 2011 through
2020. Our data for the Russell does not include the June 2021 reconstitution day. We
report summary statistics for these observations in Table 2. Number of shares and market

6Gordon Charlop, a managing director at Rosenblatt Securities, as quoted by Chuck Mikolajczak in
“Investors brace for annual Russell index rebalancing with pandemic imprint.” Reuters. Jun 18, 2021.
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Russell reconstitution events

All
2000

to 1000
Direct

to 1000
1000

to 2000
Direct

to 2000
Avg Sd Avg Sd Avg Sd Avg Sd Avg Sd

log10(#Shares) 7.6 0.5 7.9 0.3 8.2 0.4 8.0 0.3 7.4 0.4
log10(MarketCap) 8.7 0.6 9.7 0.1 9.8 0.4 9.1 0.2 8.4 0.3
IndexWeight [bps] 2.9 3.1 2.3 0.6 4.0 4.7 7.5 2.6 2.1 2.5
log10(AvgVolume) 5.3 0.9 5.9 0.5 6.2 0.5 6.2 0.5 4.9 0.7

PastReturn [%] 58.5 121.7 68.5 71.2 25.4 47.9 −28.1 31.4 75.9 136.4

2364 295 107 285 1677

Table 2. Summary statistics describing changes to the Russell 1000 and Russell 2000 from June 2011 through June 2020
(10 reconstitution days in total). To estimate the passive-ownership share, we use data on stocks that a) switch from the
Russell 2000 to the 1000, b) get added directly to the Russell 1000, c) switch from the Russell 1000 to the 2000, or d) get
added directly to the Russell 2000. We do not use the information from stocks that drop out of the Russell 3000E. Shares
outstanding and market cap are computed at market close on reconstitution day. Index weight reflects the stock’s weight
immediately following reconstitution. Average daily volume and returns over the past year are computed using trading days
{trecon − 22, . . . , trecon − 250}.
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cap are computed at market close on reconstitution day. For stocks that enter the Russell
1000, we report the weight in the Russell 1000 immediately after they are added; for
stocks that enter the Russell 2000, we report the weight in the Russell 2000 immediately
after they are added to that index. Just like before, we calculate average daily volume
and cumulative returns using trading days {trecon − 22, . . . , trecon − 250}.

Even though the FTSE Russell uses a rules-based approach to determining
membership in the Russell 1000 and the Russell 2000, there is no guarantee that a stock
which just barely gets added to, say, the Russell 1000 will be similar to the stock that
it replaces in ways other than size (Appel, Gormley, and Keim, 2020). We want to
emphasize that our analysis in this paper does not rely on such an assumption. We study
how the volume of each stock behaves in the time period around reconstitution.

Other Indexes

The S&P 500 and the Russell are popular benchmark indexes in the US equity space.
But they are not the only indexes. To give a sense of the market landscape, we list the 15
largest US equity ETFs as of June 2022 as well as their benchmark indexes in Table 3.
In addition to the S&P 500 and the Russell, these ETFs use various CRSP indexes as
well as the Nasdaq 100.

In an ideal world, we would be able to study the rebalancing volumes of passive
investors benchmarked to these indexes as well. However, for all the other popular
benchmark indexes that we have looked at, the reconstitution timing seems to line up
with the quarterly triple-witching date. For example, consider the CRSP US Total
Market Index, which is used by the Vanguard Total Stock Market ETF (ticker:VTI). For
this index, “reconstitution occurs quarterly after the market close on the third Friday
of March, June, September, and December. (CRSP Indexes, 2022)” Likewise, the
Nasdaq 100, which is used by the Nasdaq QQQ ETF (ticker:QQQ), reconstitutes “once
annually. . . after the close of trading on the third Friday in December. (Nasdaq, 2021)”

We also note that, while Russell reconstitution day is now the biggest trading day
of the year in US equity markets, only three of the largest 15 US equity ETFs are
benchmarked to the Russell 1000/2000. This is consistent with our observation that most
passive investing is not done through index funds. It is done via direct indexing.
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Benchmark indexes for largest US equity ETFs

Fund name Benchmark AUM

1. SPDR S&P 500 SPY S&P 500 $345b
2. iShares Core S&P 500 IVV S&P 500 $280b
3. Vanguard S&P 500 VOO S&P 500 $246b
4. Vanguard Total Stock Market VTI CRSP US Total Market $245b
5. Invesco QQQ QQQ Nasdaq 100 $156b
6. Vanguard Value VTV CRSP US Large Value $93b
7. Vanguard Growth VUG CRSP US Large Growth $68b
8. Vanguard Dividend Appreciation VIG S&P US Dividend Growers $59b
9. iShares Core S&P Small-Cap IJR S&P SmallCap 600 $59b

10. iShares Russell 1000 Growth IWF Russell 1000 Growth $58b
11. iShares Core S&P Mid-Cap IJH S&P MidCap 400 $55b
12. iShares Russell 2000 IWM Russell 2000 $52b
13. iShares Russell 1000 Value IWD Russell 1000 Value $51b
14. Vanguard Mid-Cap VO CRSP US Mid Cap $47b
15. Vanguard High Dividend Yield VYM FTSE High Dividend Yield $43b

Table 3. Largest US equity ETFs as sorted by assets under management in June 2022.
The data come from https://www.etf.com/channels/us-etfs.

3.2 Rebalancing

The conventional wisdom is that investors face a trade off between liquidity and
immediacy. Based on this logic, you might expect that passive investors would try to
gradually rebalance their holdings in anticipation of a scheduled reconstitution event.
FTSE/Russell reconstitutes its Russell family of indexes on the last Friday of June each
year. And they make an announcement weeks ahead of time to ensure that “stock-market
trading [is] very orderly”7 Yet we see no evidence that passive investors are gradually
rebalancing their holdings. Instead, stocks that get added or dropped experience a huge
spike in volume right at market close on reconstitution days.

7Victor Reklaitis. “Why Friday could be the year’s biggest trading day.” MarketWatch. Jun 26, 2015.
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Figure 3. Volume relative to shares outstanding in the 30 trading days around a
reconstitution event, {trecon − 22, . . . , trecon + 7}. Left panel reports results for S&P 500
reconstitution events (sample period: January 2011 through December 2021). Right
panel reports results for Russell reconstitution events (sample period: June 2011 through
June 2020). There are two percentages listed on each y-axis. The smaller one is the
average percent of shares outstanding that got traded on days {trecon − 22, . . . , trecon − 6}.
The larger one is the percent of shares outstanding that got traded on reconstitution day
(trecon). The 1.8% value in the right panel is the percent of shares outstanding that got
traded on day (trecon − 5) for Russell reconstitution events. This date corresponds to the
triple-witching day on the third Friday in June.

Daily Volume

Let’s start with data on the daily trading volumes experienced by stocks that move
between indexes. These data come from CRSP. Some passive indexers, such as index
ETFs, have to rebalance their holdings on the reconstitution day itself. However, other
kinds of index-linked investors, like a pension fund that is directly indexing, do not have
to be so strict. You might imagine that passive investors who are not constrained to be
strict end-of-day indexers would gradually rebalance their holdings in advance of
reconstitution events. You might expect the volumes of stocks that get added to or
dropped from the S&P 500 or the Russell to increase in the days prior to reconstitution.

This is not what the data show as indicated in Figure 3. The left panel shows that
1.6% of all shares outstanding get traded on an average trading day for the typical stock
that will soon be added to or dropped from the S&P 500. Here, an “average trading day”
means the average taken over days {trecon − 22, . . . , trecon − 6}. Likewise, for Russell
stocks, 1.2% of all shares outstanding change hands on an average day.
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Trading volume on reconstitution days

Volumen
AvgVolumen

100 ×(
Volumen
#Sharesn

) 100 ×(
ETFvolumen

Volumen

)
Avg Sd Avg Sd Avg Sd

All 26.4 34.9 9.9 8.7 27.6 208.3

S&P 500

All 22.9 13.7 21.9 9.5 16.9 8.7
Add 26.8 14.1 21.3 10.7 18.1 8.2

Drop 14.6 8.1 23.2 6.3 14.3 9.1

Russell

All 26.7 36.0 9.2 8.0 28.4 215.5
From 2000 to 1000 10.0 6.3 9.5 3.0 31.1 7.0

Direct to 1000 7.9 5.1 5.4 4.6 10.7 4.0
From 1000 to 2000 7.3 4.4 10.4 3.5 30.3 7.5

Direct to 2000 35.4 41.0 9.1 9.2 28.7 255.7

Table 4. This table reports cross-sectional statistics for different measures of trading
volume (columns) for different kinds of reconstitution events (rows). These statistics are
computed on reconstitution day itself. Volumen

AvgVolumen
: Ratio of the volume on reconstitution

day to the volume on an average trading day during the past year. How many days
worth of volume was traded on reconstitution day? Volumen

#Sharesn
: Ratio of reconstitution-day

volume to shares outstanding. How much of the total supply of shares was traded on
reconstitution day? ETFvolumen

Volumen
: Ratio of ETF-rebalancing volume to total reconstitution-

day volume. How many times more trading was there on reconstitution day than could
be explained by ETFs alone? S&P 500 data cover the period from January 2011 through
December 2021. Russell data cover the 10 reconstitution days from June 2011 through
June 2020. ETF data comes from ETF Global. All other data comes from CRSP.
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Figure 3 shows that there is very little change right up until the reconstitution day
itself. Then, all of the sudden, trading activity explodes. 21.9% of shares outstanding get
traded on reconstitution day for stocks that get added to or dropped from the S&P
500. 9.2% of shares outstanding get traded on reconstitution day for stocks that are
involved in the Russell’s annual event. The only minor uptick in trading volume prior to
reconstitution day comes on day (trecon − 5) for Russell reconstitution events. This date
coincides with the third Friday in June, which is a triple witching day.

Table 4 reports summary statistics describing the amount of reconstitution-day
volume experienced by stocks that get added to the S&P 500 or the Russell. Because
trading volumes can differ across stocks by orders of magnitude, it is important
to normalize these volume statistics. One way to do this is to look at the ratio of
reconstitution-day volume to shares outstanding, Volumen

#Sharesn
, like we did in Figure 3. i.e.,

how much of the total supply of shares was traded on reconstitution day?
Another common approach is to compute the ratio of the volume on reconstitution

day to the volume on an average trading day during the past year, Volumen
AvgVolumen

. We
compute this average daily volume over the past year using data from trading days
{trecon − 22, . . . , trecon − 250}. This approach answers the question: How many “normal
days” worth of volume got traded on reconstitution day? Table 4 reveals that, for stocks
the move in and out of the S&P 500, 22.9 normal-days worth of volume occurs on
reconstitution day. For Russell movers, 26.7 normal-days worth of volume changes
hands on the last Friday in June.

An index ETFs benchmarked to the S&P 500 or the Russell 1000/2000 would have
to rebalance on reconstitution day. And ETFs have become an important part of modern
financial markets. The amount of money managed by this kind of fund as grown by over
500% during the past decade according the ICI Fact Book (2022). So you might wonder
whether trading by this particular kind of index fund might be enough to explain the
spike in reconstitution-day volume that we observe.

The final two columns in Table 4 show that this is not the case. These columns
report the mean and standard deviation of the ratio of ETF-rebalancing volume to total
reconstitution-day volume, ETFvolumen

Volumen
. We compute ETFvolumen for a given stock using

data from ETF Global. These data contain the end-of-day holdings of US ETFs. From
these holdings, we impute the required rebalancing volume of all ETFs tracking a
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Figure 4. Volume at close as a percent of total volume during the 30 trading days around
a reconstitution event, {trecon − 7, . . . , trecon + 7}. Left panel reports results for S&P 500
reconstitution events (sample period: January 2011 through December 2021). Right
panel reports results for Russell reconstitution events (sample period: June 2011 through
June 2020). The two percentages listed on each y-axis in the left panel are the average
percent of volume at the close on trading days {trecon − 7, . . . , trecon − 1} and the percent
of volume at the close on reconstitution day (trecon). The three percentages listed on each
y-axis in the right panel are the average percent of volume at the close on trading days
{trecon − 7, . . . , trecon − 1}, the percent of volume at the close on trading day (trecon − 5),
and the percent of volume at the close on reconstitution day (trecon).

particular index. There is roughly 6× as much volume on S&P 500 reconstitution days
as can be explained by ETF rebalancing alone. On Russell reconstitution day, there is a
little less than 4× more volume than required by ETF rebalancing.

Volume at Close

Of course, not all trading activity on reconstitution days has to come from passive
investors who are rebalancing their holdings. You might worry that the sudden burst in
reconstitution-day volume that we document in Figure 3 and Table 4 is being driven by
other kinds of traders. For example, perhaps short-term arbitrageurs are entering the
market to exploit the predictable demand coming from passive investors? If they are
trading a lot among themselves during the course of a reconstitution day, then this would
artificially inflate the daily volume statistics.

To address this sort of concern, we exploit the fact that most passive investors
preposition their rebalancing trades to get executed right at market close (Li, 2022;
Madhavan, Ribando, and Udevbulu, 2022). We use intraday data from TAQ to compute
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the fraction of a stock’s trading volume during a given day with occurs either at the
closing auction or in the minutes immediately after. Due to high volumes at close, some
prescheduled trades do not officially hit the tape until a few minutes after market close.
We define VolumeAtClosen as the trading volume from 4:00pm-4:20pm.8

Figure 4 shows that, on an average trading day, a stock which will move into or
out of the S&P 500 will usually have 12.9% of its volume get executed at the close.
However, on reconstitution day itself, 98.7% of the total daily volume listed in CRSP
gets executed from 4:00pm-4:20pm. Note that this number can larger than 100%. When
computing VolumeAtClosen using TAQ data, we are including trades that occur from
4:01pm-4:20pm which are classified as after hours by CRSP.

The analogous numbers for Russell reconstitution day are also stunning. On a typical
trading day, a Russell index changer will have 5.5% of its volume at the close. On
Russell reconstitution day, 94.8% of trading volume will take place from 4:00pm-4:20pm.
We report a more detailed breakdown of these numbers in Table 5. For instance, we find
that, for stocks that move from the Russell 2000 to the 1000, 8.2 “normal days” worth of
volume occurs at market close on reconstitution day.

Figure 4 again reveals a smaller spike in closing volume on day (trecon − 5). This is
the triple-witching day on the third Friday in June. The jump in end-of-day volume on
this earlier date is due to rebalancing associated with the expiration of stock options,
index options, and index futures. These derivatives expire right at market close.

If a reconstitution event were to occur on a triple-witching day, we would not be able
to distinguish end-of-day volume due to index reconstitutions from end-of-day volume
due to derivatives trading. This is why we do not apply our approach to estimate the
passive-ownership share of investors who are benchmarked to indexes, such as the
Nasdaq 100, which reconstitute on triple-witching days.

There is obviously a lot of money benchmarked to other popular indexes. However,
if we were to include these indexes in our analysis, we would tend to overstate the
passive-ownership share. And we are trying to be as conservative as possible. In spite of
these precautions, in the following section, we show that the passive investors own twice
as much of the US stock market as previously thought.

8That being said, we estimate that 94% of the closing volume for index changers on reconstitution day
occurs right at 4:00pm. i.e., for every 1m traded at 4:00pm, 60k shares get traded from 4:01-4:20pm.

23



Volume at close on reconstitution days

100 ×(
VolumeAtClosen

Volumen

)
VolumeAtClosen

AvgVolumen

100 ×(
VolumeAtClosen

#Sharesn

)
Avg Sd Avg Sd Avg Sd

All 95.0 40.7 27.2 38.3 9.3 6.3

S&P 500

All 98.7 33.8 24.0 18.3 21.4 9.0
Add 103.2 32.3 28.7 19.4 21.7 8.9

Drop 89.0 35.1 14.2 10.2 20.9 9.4

Russell

All 94.8 41.1 27.5 39.5 8.5 5.1
From 2000 to 1000 75.3 29.2 8.2 6.9 7.5 4.2

Direct to 1000 72.6 36.7 8.4 6.9 3.7 3.7
From 1000 to 2000 70.8 33.9 5.4 4.7 7.7 5.6

Direct to 2000 104.4 40.9 38.2 45.0 9.1 5.0

Table 5. This table reports cross-sectional statistics for different measures of volume at
close (columns) for different kinds of reconstitution events (rows). These statistics are
computed on reconstitution day itself. VolumeAtClosen

Volumen
: Ratio of the volume at market close

on reconstitution day to the total volume on reconstitution day. VolumeAtClosen
AvgVolumen

: Ratio of the
volume at close on reconstitution day to the volume on an average trading day during the
past year. How many days worth of volume was traded at market close on reconstitution
day? VolumeAtClosen

#Sharesn
: Ratio of the volume at close on reconstitution day to the total number

of shares outstanding. How much of the total supply of shares was traded right at market
close on reconstitution day? S&P 500 data cover the period from January 2011 through
December 2021. Russell data cover the 10 reconstitution days from June 2011 through
June 2020. Data on closing volumes comes from TAQ. All other data comes from CRSP.
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4 Main Result
In this section, we plug real-world data into our methodological approach to produce

estimates for the passive-ownership share in the US stock market each year from 2011
through 2021. Subsection 4.1 provides these annual estimates. Then, in Subsection 4.2,
we characterize the precision of this finding.

4.1 Passive-Ownership Share

Every time an index replaces one stock with another, we get two estimated values for
the amount of money strictly benchmarked to that index. We start with all stocks that get
added to or dropped from an index. We then compute the float-adjusted number of shares
outstanding for each of these stocks, #Tradablen. After that, we estimate the amount
of rebalancing volume experienced by each of these stocks, RebalVolumen. Finally,
we multiply the index’s total capitalization, IndexCap, by the rebalancing volume
experienced by a single index changer as a fraction of float-adjusted shares outstanding.

We can directly observe the total market capitalization of the S&P 500 as well as the
Russell 1000 and Russell 2000 on a daily basis. We can also calculate the float-adjusted
shares outstanding for each stock in each of these indexes. This gives us #Tradablen for
the nth stock and IndexCap for the index that it belongs to. For the RebalVolumen term
in Equations (7) and (11), we use the nth stock’s closing volume on reconstitution day.
These three inputs yield a point estimate for the AUM strictly indexed to a particular
benchmark at market close each day, AUMindexed

:
n.

$1t in AUM means something different today than it did 10 years ago. The US
stock market has grown over this time period. So we scale our each estimate for
AUMindexed
:

n by the market cap of the Russell 3000 at the time that particular estimate
was made:

%Indexed
:

n =
AUMindexed
:

n

Russell3000cap
(12)

%Indexed
:

n represents a point estimate for the US passive-ownership share based on the
closing reconstitution-day volume experienced by the nth stock. The first three columns
of Table 6 report the average %Indexed

:
n associated with the S&P 500, the Russell 1000,

and the Russell 2000 each year from 2011 through 2021.
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Percent of the US stock market owned by passive investors

S&P 500
Russell
1000

Russell
2000 Total

ICI Fact
Book Difference

2011 14.63 4.15 0.75 19.52 8 11.52
(1.70) (0.34) (0.03) (2.06) [5.59]

2012 13.73 3.40 0.54 17.67 8 9.67
(1.62) (0.32) (0.02) (1.96) [4.93]

2013 12.75 3.67 0.57 16.99 9 7.99
(1.67) (0.36) (0.02) (2.05) [3.89]

2014 13.92 4.33 0.55 18.81 10 8.81
(1.54) (0.45) (0.03) (2.02) [4.35]

2015 12.45 3.27 0.51 16.23 11 5.23
(1.11) (0.29) (0.02) (1.42) [3.67]

2016 13.68 5.10 0.58 19.36 12 7.36
(1.03) (0.45) (0.02) (1.49) [4.92]

2017 21.60 6.22 0.76 28.58 13 15.58
(0.81) (0.48) (0.02) (1.31) [11.93]

2018 22.29 7.84 0.98 31.11 13 18.11
(1.04) (0.42) (0.03) (1.49) [12.16]

2019 23.27 7.84 0.76 31.87 16 15.87
(1.24) (0.57) (0.03) (1.84) [8.62]

2020 25.53 11.36 0.87 37.77 15 22.77
(2.51) (0.67) (0.03) (3.22) [7.08]

2021 22.87 16
(1.69)

Table 6. The first three columns in this table report the percent of the US stock market
owned by strict end-of-day indexers benchmarked to the S&P 500, the Russell 1000,
and the Russell 2000. Each row reports results for a different year during the period
from 2011 through 2021. The column labeled “Total” reports the sum of these three
percentages. These values correspond to the black dots in Figure 1. The “ICI Fact
Book” column depicts the percent of the US stock market owned by index mutual
funds and ETFs according to the Investment Company Institute (ICI Fact Book, 2022).
These values correspond to the orange bars in Figure 1. “Difference” represents the
percentage-point difference between the total ownership share of strict end-of-day
indexers, which is based on closing volumes for index changers on reconstitution days,
and the ICI Fact Book estimate, which is based on index-fund holdings. Numbers in
parentheses are standard errors clustered by announcement. Numbers in square brackets
are one-sided t-statistics for the null hypothesis that the difference is zero.
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For example, Figure 2 shows that there were 17 S&P 500 additions and deletions
that we could use to impute the passive-ownership share in 2015. In the first column of
Table 6, we see that these 17 events implied that 12.45% of the US stock market was
held by strict end-of-day S&P 500 indexers. The column labeled “Total” reports the total
passive-ownership share associated with all three benchmarks we analyze.

The column labeled “ICI Fact Book” depicts the percent of the US stock market
owned by index mutual funds and ETFs according to the Investment Company Institute
(ICI Fact Book, 2022). “Difference” represents the percentage-point difference between
the total ownership share of strict end-of-day indexers, which is based on closing
volumes for index changers on reconstitution days, and the ICI Fact Book estimate,
which is based on index-fund holdings.

For example, our approach implies that 16.23% of the US stock market was held by
strict end-of-day indexers who were benchmarked to the S&P 500, the Russell 1000, or
the Russell 2000 in 2015. By contrast, if you only looked at index-fund holdings, you
would guess that passive investors only held 11% of the US stock market in 2015. This
is a difference of 5.23%pt. This is the smallest difference in our sample period; yet, even
this difference is highly statistically significant. The numbers in square brackets are
one-sided t-statistics for the null hypothesis that the difference is zero.

Our 37.8% estimate for the passive-ownership share in 2020 is more than twice the
previously accepted value of 15% in 2020. Table 6 shows that 2020 was not a fluke. Our
estimate was a shade less than double the value given in ICI Fact Book (2022) for 2019.
And it was more than double this value in 2018, 2017, 2012, and 2011. This is a very
consistent pattern in the data. And it shows every sign of continuing into the future.
In 2021, if we were to consider the subset of strict end-of-day indexers who were
benchmarked to the S&P 500, then this group alone would have owned more of the US
stock market (22.9%) than all index funds combined (16%).

4.2 Estimation Error

In the first four columns of Table 6, we report standard errors that are clustered by
announcement. Based on these standard errors, the difference between our new estimate
for the US passive-ownership share and the prior estimate based on index-fund holdings
is highly statistically significant. There are two years with double-digit t-statistics.
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In addition to looking at standard errors, we also compute the within-announcement
volatility of our estimates of the share of the US stock market owned by strict end-of-day
S&P 500 indexers. Table 7 gives the average and median of Sd

(
%Indexed
:

n | n ∈
same announcement

)
across changes to the S&P 500. This analysis is motivated by

Section 2.3. We should have %Indexed
:

ADD = %Indexed
:

DROP for stocks in the same
announcement. Any differences between these values represent estimation error.

Table 7 says that, if you selected an S&P 500 announcement at random, you should
expect the range of passive-ownership shares implied by the stocks involved in this
announcement to be ±4.42% on average. The median range is 3.61%. These results are
based on announcements for which we have usable data about more than one of the
stocks added or dropped. This means two or more stocks must move in or out for
market-cap reasons on a day that did not coincide with a triple-witching day.

There are 184 announcements about changes to the S&P 500 constituent list from
January 2011 through December 2021. The first number in Table 7 reports that 123 of
these announcements involve at least one addition or deletion we can use to impute the
passive-ownership share. The second number in Table 7 reports that 18 of these 123
events involve multiple changes announced at the same time.

In is important to emphasize that the numbers in Table 7 are standard deviations not
standard errors. They represent the volatility of the noise in each observation. Our
estimate for the US passive-ownership share each year is based on multiple observations.
So the volatility of these estimates will be lower (precision will be higher). Table 6
shows that, in 2020, we estimate that the US passive-ownership share is 22.77%-points
higher than previous estimates. In 2019, we estimate that it is 15.87%-points higher. In
2018 and 2017, we estimate that it is 18.11% and 15.58%-points higher, respectively.
These differences are large when based on multiple observations of a noisy signal with
noise volatility of 4.42%.

The numbers in Table 7 reflect the economic restriction that all adds and drops in
a single reconstitution event should imply the same passive-ownership share. Any
discrepancies are the result of measurement error. Our data are not perfect. Rebalancing
around reconstitution events is subtle. We are glossing over details, such as tax
considerations (Poterba and Shoven, 2002; Moussawi, Shen, and Velthuis, 2021). Table 7
shows that the resulting noise is too small to materially affect our main result.
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Within-announcement volatility of estimates for S&P 500

#Announcements Sd
(
%Indexed
:

n | n ∈ same ancmt
)

≥ 1 stock ≥ 2 stocks Average Median

123 18 4.42 3.61

Table 7. Within-announcement volatility of estimates for the passive-ownership share
associated with the S&P 500. These results are based on the 18 announcements about
changes to the S&P 500 for which we have usable data about more than one of the
stocks involved. This means that two or more stocks were moved in or out of the index
for market-cap reasons on a day that did not coincide with a triple-witching day. ≥ 1
stock: number of S&P 500 announcements where we have at least one usable data point
over the period from 2011 through 2021. ≥ 2 stocks: number of announcements where
we have at least two usable data points. “Average” is the average within-announcement
volatility. “Median” is the median within-announcement volatility.

5 Prices and Liquidity
Given how much passive investors are trading right at market close on reconstitution

days, a natural question is: “What happens to prices?” In Subsection 5.1, we show that
the prices of index changers do not tend to move much on reconstitution day itself. So
you might guess that liquidity must skyrocket for these stocks at the time of this event.
However, in Subsection 5.2, we show how this does not at first seem to be the case. If
anything, it looks like liquidity dries up a bit on reconstitution day. We then demonstrate
how to resolve this puzzle (small price movements with massive volume) by recognizing
a quirk in how standard liquidity measures are calculated.

5.1 Prices

In Subsection 3.2, we show that index changers tend to experience a huge spike
in volume on reconstitution day. In this subsection, we document that there is no
corresponding huge change in prices on reconstitution day. Prices are relatively stable on
reconstitution day for stocks that move into and out of the S&P 500, the Russell 1000,
and the Russell 2000.

Figure 5 shows the cumulative abnormal returns of stocks that get added to or
dropped from the S&P 500 during our sample period. The left panel reports results for
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Figure 5. Cumulative abnormal returns in the 30 trading days around S&P 500
reconstitution events, {trecon − 22, . . . , trecon + 7}. Left panel reports results for stocks that
get added to the S&P 500. Right panel reports results for stocks that get dropped from
the index. Sample period covers January 2011 through December 2021. Cumulative
abnormal returns are defined relative to market returns and are set to zero at event
time τ = −1. Black bars denote positive values; red bars denote negative values. The
percentage in the lower right-hand corner of each panel denotes the realized return in
excess of the market on reconstitution day itself.

S&P 500 additions; the right panel reports analogous results for S&P 500 deletions.
Abnormal returns are defined as realized returns minus the return on the market. To
make it easier to compare results across the two panels, we normalize the cumulative
abnormal returns to be zero on the day prior to reconstitution, τ = −1.

The left panel of Figure 5 shows that additions to the S&P 500 experience positive
abnormal returns in the month prior to reconstitution. However, on reconstitution day
itself when all the trading takes place, S&P 500 additions only experience a −0.03%
abnormal return as shown in the lower right-hand corner of the panel.9 Stocks that get
dropped from the S&P 500 experience a similarly small price decline on reconstitution
day. These stocks have single day abnormal returns of −0.32% relative to the market.

Figure 6 shows the cumulative abnormal returns of stocks that move into or between
Russell indexes. The top two panels report results for stocks that become a part of
the Russell 1000 at the end of reconstitution day. The left two panels describe the
cumulative abnormal returns of stocks that switch from one index to the other. The right

9Suppose that, immediately prior to reconstitution, you bought stocks that would be added to the S&P 500
and sold stocks that would be dropped. This trading strategy used to be quite profitable. However, its
profitability has waned in recent years (Bennett, Stulz, and Wang, 2022).
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Figure 6. Cumulative abnormal returns in the 30 trading days around Russell
reconstitution events, {trecon − 22, . . . , trecon + 7}. Top panels report results for stocks that
got added to the Russell 1000; bottom panels report analogous results for the Russell
2000. Top left panel reports results for stocks that moved from the Russell 2000 up to
the Russell 1000; bottom left panel reports analogous results for stocks going from the
Russell 1000 to the Russell 2000. Right panels report results for stocks that moved
directly into one of the two indexes. Sample period covers June 2011 through June 2020.
Abnormal returns are defined relative to the market. Cumulative abnormal returns are
normalized to be zero at event time τ = −1. Black bars denote positive values; red bars
denote negative values. The percentage in the lower right-hand corner of each panel
denotes the realized abnormal return on reconstitution day itself.

two panels report results for stocks that move directly into either the Russell 1000 or the
Russell 2000.

Just like in Figure 5, we normalize the cumulative abnormal returns for each group
of stocks to be zero on the day before reconstitution, τ = −1. For stocks that get added
directly to the Russell 1000 or to the Russell 2000, we see a steady run-up in prices over
the month leading up to reconstitution (right two panels). We see an increase in prices
for stocks that move from the Russell 2000 to the Russell 1000 (top left panel). And we
see the opposite effect for stocks that move in the opposite direction. All of these
longer-term trends are consistent with economic intuition. However, we again see muted
price effects on reconstitution day itself.
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5.2 Liquidity

While trading volume for index changers is through the roof on reconstitution day,
their prices hardly move. So you might expect that standard measures of liquidity for
these stocks would show that they have become much more liquid. Not so. In this
subsection, we first outline what the data seem to show. Then, we describe the problem
with this initial naïve analysis. Index changers are very liquid on reconstitution day.

Paradox

Figure 7 reports the median effective spread (top panels) and Kyle (1985)’s λ
(bottom panels) in the 30 trading days around S&P 500 (left panels) and Russell (right
panels) reconstitution events. The estimates come from the WRDS Intraday Indicators
database, which is based on the millisecond TAQ database.

The effective spread is the difference between the executed price and the midpoint
divided by the midpoint price. For each trade k on a given trading day for the nth stock,
WRDS computes

2 ·
(
Pricen(k) −MidPointn(k)

MidPointn(k)

)
× {

IsBuyn(k) − IsSelln(k)
}

(13)

Pricen(k) is the price at which the kth trade is executed for stock n. MidPointn(k) is the
national-best (NB) bid and ask for stock n at the time the kth trade took place. IsBuyn(k)
and IsSelln(k) are indicators for whether the kth trade for stock n was a buy or a sell
order. The effective spread is the dollar-weighted average of this measure across trades
for stock n on day τ. We report this value in basis points in Figure 7.

Kyle’s λ is the change in price per million shares traded. We take the values
computed by WRDS using an intercept based on data during market hours (does not
include 4:01pm-4:20pm). Using the observed collection of trades k = 1, 2, . . . ,K on a
single trading day for the nth stock, WRDS estimates the regression below:

Returnn(k) = α̂n + λ̂n · log $Volumen(k) × { IsBuyn(k) − IsSelln(k) } + ε̂n(k) (14)

The value of Kyle’s λ on a particular trading day for the nth stock is the estimated value
of λ̂n from this regression.
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Figure 7. Two measures of liquidity in the 30 trading days around a reconstitution
event, {trecon − 22, . . . , trecon + 7}. The top two panels report the effective spread; the
bottom two panels report Kyle’s λ. The left panels report these values for S&P 500
reconstitution events; the right panels report them for Russell reconstitution events. The
effective spread is the difference between the executed price and the midpoint divided by
the midpoint price. We report this value in basis points. Kyle’s λ is calculated as the
change in price per million shares traded. Both statistics come from the WRDS Intraday
Indicators database. Each bar reports the median value for all index changers on a given
day relative to reconstitution. The average effective spread for additions and deletions to
the S&P 500 on days {trecon − 22, . . . , trecon − 6} was 5.5bps. For Russell index changers,
it was 23.3bps over the same time period. The average value of Kyle’s λ for additions
and deletions to the S&P 500 on days {trecon − 22, . . . , trecon − 6} was $0.6 per million
shares. For Russell index changers over the same time period, it was $3.3 per million
shares traded. In addition, Kyle’s λ jumps to $5.3 per million shares traded on Russell
reconstitution day for affected stocks.
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The average effective spread for additions and deletions to the S&P 500 on days
{trecon − 22, . . . , trecon − 6} was 5.5bps. For Russell index changers, it was 23.3bps over
the same time period. The top two panels in Figure 7 seem to indicate that these average
effective spreads do not change much on reconstitution day. The average value of Kyle’s
λ for additions and deletions to the S&P 500 on days {trecon − 22, . . . , trecon − 6} was
$0.6 per million shares. For Russell index changers over the same time period, it was
$3.3 per million shares traded. The bottom left panel in Figure 7 indicates that Kyle’s λ
does not change on S&P 500 reconstitution days. Whereas, the bottom right panel shows
that Kyle’s λ jumps to $5.3 per million shares on Russell reconstitution days.

Resolution

In Figure 7, we see that standard measures of liquidity on reconstitution days suggest
that index changers become less liquid on reconstitution days. This is paradoxical. If
they are less liquid, then where are all the large price changes given the huge spikes in
reconstitution-day volume experienced by these stocks.

However, the results in Figure 7 are misleading. To compute effective spreads
and Kyle’s λ, researchers need to be able to sign trades. They need to be able to tell
whether a particular trade was initiated as a buy order or as a sell order. The factor
of { IsBuyn(k) − IsSelln(k) } shows up in both Equation (13) and Equation (14). The
standard way to do this is using the Lee and Ready (1991) algorithm. According to this
rule, any trade that gets executed at a price much higher than the prevailing midpoint is
classified as a buy order. Any trade that gets executed below the midpoint is a sell.

Here is the issue: if a trade gets executed either at the midpoint or at the closing
auction, the Lee and Ready algorithm will not be able to classify it one way or the other.
Such trades do not get used by WRDS Intraday Indicators when computing the effective
spread and Kyle’s λ. Thus, the standard liquidity measures that are widely used in the
literature do not reflect closing-auction trading.

Figure 8 shows that, on an average day during the period {trecon − 22, . . . , trecon − 6}
prior to reconstitution, the Lee and Ready algorithm is able to sign 86.9% of all trades
for additions and deletions to the S&P 500 and 90.6% of all trades for Russell index
changers. However, on reconstitution day itself, the algorithm can only classify 20.6%
and 23.7% of trades for these two groups.
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Figure 8. Percent of trades that can be signed using the Lee and Ready (1991) algorithm
in the 30 trading days around a reconstitution event, {trecon − 22, . . . , trecon + 7}. Left
panel reports results for S&P 500 reconstitution events (sample period: January 2011
through December 2021). Right panel reports results for Russell reconstitution events
(sample period: June 2011 through June 2020). On an average day during the period
{trecon − 22, . . . , trecon − 6} prior to reconstitution, 86.9% of all trades can be signed for
additions and deletions to the S&P 500; 90.6% of trades can be signed for Russell index
changers during the same interval. However, on reconstitution day itself, only 20.6% of
trades can be signed for S&P 500 additions and deletions. And only 23.7% of trades can
be signed for Russell index changers on Russell reconstitution day.

Thus, while the measures on reconstitution days that we report in Figure 7 seem to
suggest that index changers get slightly less liquidity on reconstitution days, these
calculations do not reflect the fact that roughly 80% of the trades on reconstitution day
cannot be signed. This is because these orders arrive as prepositioned trades made on
behalf of strict end-of-day indexers. They are structured to be executed at the price
which is determined by the closing auction on reconstitution day.10

The fact that the Lee and Ready algorithm fails to sign more than 80% of trades is
consistent with the idea that it is incredibly cheap to trade large quantities of index
additions and deletions right at market close on reconstitution day. This observation has
important implications for the findings in this paper. It also suggests researchers must be
careful when estimating liquidity on reconstitution days in other applications.

10Consistent with our earlier discussion, we note that only 75.1% of trades for Russell index changers can
be signed on day (trecon − 5), which corresponds to the triple-witching day on the third Friday in June.
These trading days also involve prepositioned orders that are scheduled to be executed at market close.
But, instead of coming from passive investors who are rebalancing in response to an index reconstitution,
the prepositioned trades on day (trecon − 5) stem from the expiration of derivatives contracts.
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6 Discussion
We estimate that passive investors own at least 37.8% of the US stock market.

This value is more than double the widely accepted previous estimate for the US
passive-ownership share at year-end 2020, 15%. We conclude our analysis by discussing
some of the broader implications of this main finding.

6.1 Who Holds What And Why

Consider a “simple” static portfolio-choice problem. The ith investor chooses the
fraction of his initial wealth to invest in N ≥ 2 risky assets so as to maximize his
expected utility from consuming his terminal wealth:

maximize E
[
U(Wealthi | θi)

∣∣∣ InfoSeti ] (15a)

subject to Wealthi = ωi × {
(1 + δ) +

∑N
n=1 Weighti

n · (Returnn − δ) } + · · · (15b)

InfoSeti =
{ {δ, ωi, θi, . . .}, Returns ∼ cdf(·), . . . } (15c)

E[ · | InfoSeti ] denotes the ith investor’s conditional expectation given his InfoSeti.
U(Wealthi | θi) denotes this investor’s utility from consuming Wealthi after trading
concludes. θi represents the collection of parameters that define his utility function,
such as time preference, risk aversion, etc. δ denotes the risk-free rate, and Returns =

{Returnn}Nn=1 ∼ cdf(·) denotes the joint distribution of returns.
Bach, Calvet, and Sodini (2020) argues that rich people (i.e., people with high

ωi values) tend to have different risk tolerances (i.e., different values of θi). Barber
and Odean (2001) points to differences in holdings driven by innate differences in θi

across investors, such as gender. Malmendier and Nagel (2011) gives evidence that
past experience influences θi. And Hong, Kubik, and Stein (2004) shows how social
interactions can influence portfolio holdings via investors’ beliefs about the distribution
of returns, Returns ∼ cdf(·).

All of these effects are interesting and important in their own right. But they each
explain only a small fraction of investors’ decisions. Our 37.8% estimate for the fraction
of the US stock market owned by passive investors implies that that index inclusion is
the single most important consideration when modeling portfolio choice.
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By comparison, Balasubramaniam, Campbell, Ramadorai, and Ranish (2022) find
that all other investor- and stock-level characteristics combined only explain 4.0% of the
variation in households’ portfolio holdings. Thus, when trying to explain who holds what
and why, index inclusion has an order of magnitude more explanatory power than all the
other things that financial economists have previously studied, 37.8% ≈ 10 × 4.0%. If
these other effects are important to include in realistic models of portfolio choice (and
we think they are!), then index inclusion should be the first feature added to such models
going forward.

6.2 Modeling the Rise of Passive Investing

Financial economists currently equate passive investors with the uninformed traders
in a Grossman and Stiglitz (1980)-type model.11 We think it is noteworthy that this line
of reasoning gave no hint that previous estimates for the passive-ownership share were
off by a factor of two. The size of this blind spot suggests that, at the very least, there is
an important ingredient missing from these models.

It is easy to imagine a world where things were different. Look at the literature on the
equity-premium puzzle (Mehra and Prescott, 1985). “Stocks have a substantially higher
average return than bonds. Typical estimates put the equity premium between 4% and
8%. Even 4% is puzzling. Why do people not try to hold more stocks, given the power
of compound returns to increase wealth dramatically over long horizons? (Cochrane,
2017)” Say what you want about the textbook consumption asset-pricing model (Merton,
1973), it clearly makes predictions that are precise enough to be in disagreement with the
observed data. This fact has sparked a decades long search to figure out why.

By contrast, existing models of the rise in passive investing are not precise enough to
recognize that previous estimates for the US passive-ownership share were 50% too low.
This is a problem for researchers and policymakers who want to use these models to
reason about financial markets. We hope the findings in this paper push theorists in this
literature to tighten the range of predictions compatible with their models.

11This modeling approach starts with the optimization problem outlined in Equations (15a)-(15c). Then,
it introduces a cost of information acquisition in place of the “+ · · · ” in Equation (15b). It also assumes
that the “. . .” term in investors’ information set in Equation (15c) includes the equilibrium price of each
risky asset as well as the share of investors who acquired the costly signal.
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6.3 Excess Trading Volume

Here is a slightly different way of looking at the problem at our main result poses for
the existing way of thinking about passive investing. Suppose our interpretation of the
closing volumes for index additions and deletions on reconstitution day is wrong.
Imagine that these trades are not coming from passive investors and that the true
passive-ownership share for the US stock market is on par with the numbers reported by
the Investment Company Institute. Even in that world, the sudden spike in index-changer
volume on reconstitution day would be problematic.

There is more trading activity in real-world financial markets than most models
would predict (Milgrom and Stokey, 1982; Odean, 1999). But the usual explanations
for this excess volume are based on differences of opinion (e.g., Harris and Raviv,
1993; Hong and Stein, 2007) and/or overconfidence (e.g., Barber and Odean, 2001;
Scheinkman and Xiong, 2003).

In Figure 3, we see a massive spike in trading volume on reconstitution day itself
and almost no increase in volume during the days leading up to it. Yet, all relevant
information about which stocks will be added or dropped from an index is known well in
advance of reconstitution day. There is precious little for traders to disagree over or be
overconfident about by the time reconstitution day finally arrives.

6.4 The True Cost of “Free”

It could be that existing models for the rise of passive investing are correct but
incomplete. But there is also another interpretation. Perhaps financial economists should
not be thinking about passive investors as uninformed traders in a Grossman and Stiglitz
(1980)-type model?

Looking around at how the index-fund industry operates, it seems like there is some
merit to this interpretation. As Pedersen (2018) and Easley, Michayluk, O’Hara, and
Tālis (2021) point out, passively tracking the market portfolio requires a substantial
amount of trading. “New shares are issued, others are repurchased, and indices are
reconstituted. (Pedersen, 2018)” And important market participants in the passive
investing industry, such as Vanguard, BlackRock, and State Street, spend substantial
sums of money managing this turnover in an intelligent way. There are sell-side analysts
specializing in reconstitution events.
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There are good reasons to think that holding the market portfolio is not “free”. It is
easy to find examples where investors have suffered major losses because they failed to
appropriately account for index rebalancing.12 Moreover, index providers are able to
charge large fees for the privilege of tracking their benchmark (An, Benetton, and Song,
2022). So perhaps passive investors are still paying for information; it is just a different
kind of information. Instead of paying for a signal about an asset’s future payout, they
might be paying for a signal about index inclusion.

6.5 Index Funds vs. Indexing

At the heart of our paper is an observation about how indexing is not the same thing
as buying an index fund. Figure 1 shows that, in 2020, there was more money passively
invested by direct indexers than was held by all index funds. This important distinction
is currently being overlooked in the literature. And we hope it receives more attention
going forward.

We study the closing volumes on reconstitution day of the stocks that get added or
dropped from an index. These are the assets that ETFs hold. But the ETFs themselves
also have surprisingly high trading volumes. The SPDR S&P 500 ETF (ticker:SPY) is
one of the most actively traded securities in US markets.

One reason that ETFs get traded so much is that they provide institutional investors
with a new way to build trades. For instance, “industry ETFs [can] help informed
investors hedge industry risk. (Huang, O’Hara, and Zhong, 2021)” And surveys regularly
find that institutional investors are replacing index-futures positions with analogous
positions in ETFs (Greenwich Associates, 2016).

ICI Fact Book (2022) documents the explosive growth of the size of the ETF
industry in recent years. We think this is a super important trend. However, we see it as
important for different reasons. This trend does not reflect the rise of passive investing,
although this too was going on in the background. Instead, it reflects a change in how
institutional investors are building portfolios.

12Nathan Vardi. “Hedge Funds Suffered Losses As Index Rebalancing Trade Went Awry.” Forbes. Mar 27,
2020.
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7 Conclusion
We show how to estimate the share of the US stock market held by passive investors

using data about the closing volumes of index additions and deletions on reconstitution
day. We find that strict end-of-day indexers held 37.8% of the US stock market in 2020.

There are two important takeaways from our analysis. The first is quantitative. Our
37.8% estimate is more than double the widely accepted previous value of 15%, which
represents the combined holdings of all index funds. What’s more, 37.8% is a lower
bound. The true passive-ownership share for the US stock market must be higher.
All this implies that index inclusion is the single most important consideration when
modeling portfolio holdings.

The second important takeaway is methodological. The rise of passive investing
has been one of the most talked about developments in financial markets. There is
now an entire theoretical literature which aims to understand the consequences for
price informativeness and investor welfare. We think it is noteworthy that, when
calibrated to the data, none of these models recognized that the assumed values for the
US passive-ownership share were off by a factor of two. The size of this blind spot poses
a real problem for anyone trying to use these models to make policy decisions.
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