Course Description and Objectives
Data analytics is a set of techniques that enterprises use to gain insight from their data and make better decisions. Many firms in a variety of industries use these techniques: Google, Amazon, Target, Coca-Cola, WalMart, Capital One. These techniques are also applicable to the many functional areas of business, such as operations, marketing, accounting, finance, etc. Furthermore, the modern abundance of data, so-called “Big Data,” underscores the value that analytics can provide a firm, be it non-profit, for-profit, or government.

This course introduces data analytic techniques via quantitative tools and sophisticated software (R, Rattle and Tableau). These techniques are drawn from machine learning, data mining, and optimization. Note that this is not a technical or theoretical course. This course does not aim to produce experts in statistical analysis; rather, the aim is to provide students competency to interact with and manage a team of analytics professionals. Furthermore, this is not a technical or theoretical course; we will instead focus on the application of analytics techniques to real business situations, with the aim of creating insight and value.

The course is divided into the following six main modules under three topic areas of Descriptive Analytics, Predictive Analytics, and Prescriptive Analytics:
1. Introduction and Visualization (Descriptive and Inferential Analytics)
2. Supervised Learning: Prediction (Predictive Analytics)
3. Supervised Learning: Classification (Predictive Analytics)
4. Unsupervised Learning: Clustering (Descriptive and Predictive Analytics)
5. End to End Analytics: Optimization and Learning (Prescriptive Analytics)
6. Projects

Our course goals are the following:
1. Students should be able to think critically about data analysis, which includes selecting the right type of analysis for a given task.
2. Students should be able to identify opportunities of applying data analytics, in real business settings.
3. Students should be well equipped to become data-savvy managers.

To achieve the above goals, lectures will cover the major concepts and analytical tools. Cases and practice problems will allow you to analyze different industry settings, analyze different company strategic problems, and identify key issues related to data and modeling.

Recommended Textbook
Computer Software
Students are expected to be familiar with using Microsoft Excel software (e.g., modules 1-3 on the Excel for Business online course, available on canvas.uw.edu. In addition, we will be using Tableau, R, and Rattle in this class. These software packages are both available in the computer labs in Paccar 190. Student licenses to Tableau will be provided; R and Rattle are free.
- Tableau can be downloaded at http://www.tableau.com/products/trial
- R can be downloaded at https://cran.fhcrc.org

Assignments
Most weeks a case will be assigned. Students are expected to work either individually or in groups on the cases. However, each student must submit his/her own solution. These assignments are due at the beginning of class on their posted due date and are electronically submitted through the class website on canvas.uw.edu.

Group Project
The final module of this course will consist of a group project where teams will apply the techniques of the course to real data. Further details will be released later in the course.

Grading
Student grades will be calculated applying the following allocation in a simple weighted average:
1. Assignments 50%
2. Group Project 25%
3. In Class Assignments 20%
4. Participation 5%
The (required) target median GPA in this class is 3.4 – 3.6.

Course Website
All course materials will be distributed electronically through the website canvas.uw.edu. Assignments and Team Projects are submitted electronically through this website (by their due dates!).

CLASS SCHEDULE AND TOPICS
(subject to revision)

Session 1:
Introduction to Data Analytics and R
Introduction to Visualization

Session 2:
Descriptive Analytics:
Visualization: Tableau I

Session 3:
Descriptive Analytics:
- Visualization: Tableau II
- In Class Exercise
Session 4:
Data Manipulation
Data Preprocessing and Cleaning
Descriptive Analytics:
Clustering (Unsupervised Learning)
 • Netflix and Recommendation Systems
 • New Location Problem
Tableau Assignment Due

Session 5:
Predictive Analytics:
Prediction: Linear Regression (Supervised Learning)
 • Predicting Wine Quality
 • Sports Analytics
Visualization & Clustering Assignment Due

Session 6:
Predictive Analytics:
Classification: Logistic Regression (Supervised Learning)
 • Predicting Quality in Healthcare
 • Framingham Heart Study
Linear Regression Assignment Due

Session 7:
 • Guest Speaker
 • Homezilla Case Study
Logistic Regression Assignment Due

Session 8:
Predictive Analytics:
Prediction and Classification: CART (Supervised Learning)
 • Predicting Supreme Court Decisions
 • Healthcare Cost Prediction
CART Assignment Due

Session 9:
Team Presentations