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Abstract

This paper quantifies the strength of forward-looking behavior and its implications for pricing

strategy in the context of a dynamic consumer stockpiling model. In prior work, researchers

have assumed that storage costs are a continuous function of inventory. We demonstrate that

this seemingly innocuous simplifying assumption rules out exclusion restrictions which naturally

arise from the institutional features of the stockpiling problem. The lack of exclusion restrictions

in earlier models requires researchers to fix the discount factor, instead of estimating it. We show

formally that by properly modelling storage cost as a step function of inventory (because storage

cost depends on the number of packages stored, instead of the actual amount of inventory), the

key state variable of this model, inventory, provides natural exclusion restrictions that can help

identify the model’s parameters, including the discount factor. We then estimate a stockpiling

model using scanner data on laundry detergents, and recover the population distribution of the

discount factor. Our estimates suggest that although some consumers have discount factors close

to the rational expectations benchmark of about 0.999, most are much less forward-looking: The

estimated average weekly discount factor is about 0.71. A counterfactual exercise shows that if

one used a model which fixed the discount factor to be consistent with rational expectations,

one would overpredict the effect of increased promotional depth on quantity sold by 15%.
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1 Introduction

Forward-looking behavior is a critical component of many quantitative models of consumer behavior

used by researchers in marketing and economics (Erdem and Keane (1996), Crawford and Shum

(2005), Erdem, Imai, and Keane (2003), Hendel and Nevo (2006a), Hartmann and Nair (2010),

Chan, Narasimhan, and Zhang (2008), Seiler (2013), Liu and Balachander (2014), Osborne (2011),

Yao, Mela, Chiang, and Chen (2012), Yang and Ching (2014), Osborne (2018a)). When consumers

are forward-looking, they also behave strategically when making their purchase decisions. The

presence of strategic behavior has important implications for the profitability of a firm’s dynamic

pricing strategy. For example, in the context of storable consumer packaged goods such as canned

tuna or canned soup, forward-looking consumers may respond to a temporary price promotion

today by stockpiling the product, since they understand that future prices are likely to be high

(Erdem, Imai, and Keane (2003), Liu and Balachander (2014), Haviv (2014)). If all shoppers

were extremely forward-looking and acted in such a savvy way, durable goods producers would

not be able to use a price skimming strategy (Coase 1972), and grocery stores or supermarkets

would never sell their carried items at a regular (non-deal) price. This is not the case, since in

reality price skimming and Hi-Lo pricing are both prevalent, and consumers do make purchases

of products when their prices are high. Prior research on periodic promotions (Hendel and Nevo

(2013), Hong, McAfee, and Nayyar (2002), Pesendorfer (2002), Sobel (1984)) has recognized that

firms can use periodic promotions to price discriminate between patient and impatient consumers.

Forward-looking behavior is an important driver of choice in many other marketing contexts as

well: For example, for new durable goods such as cameras or smart phones, consumers may wait

to purchase a product if they expect the product’s price to fall in the future.

A widely used modeling framework for empirically analyzing forward-looking decisions is the

discrete choice dynamic programming framework (Rust 1994). In dynamic discrete choice models,

the strength of forward-looking behavior is captured by a parameter called a discount factor : the

closer the discount factor is to 1, the more weight consumers put on future payoffs when making

current decisions. Most empirical research in this area does not estimate the discount factor, instead

exercising a “rational expectations” assumption which uses the prevailing interest rate to fix the

discount factor accordingly. This calibration approach leads to a value of the yearly discount factor

of 0.95, and the weekly discount factor of about 0.9995.1 The rational expectations assumption

1At a yearly interest rate of 5%, which is consistent with U.S. real interest rates in the period 2001-2010, a rational

consumer would discount utility in the following year at a rate of about 0.95, and would have a weekly discount rate

of about (1/(1 + 0.05)(1/52) ≈ 0.9995. In practice, researchers will sometimes set a slightly lower discount factor than

the rational expectations assumption implies to reduce the computational burden of estimating the dynamic model.
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is, however, at odds with a wealth of experimental studies which find that the discount factors

can range from between 0.00 to 0.99 (Frederick, Loewenstein, and O’Donoghue (2002)). Such a

wide range of estimates suggests that the discount factor could be context specific. Moreover, in

stated choice experiments performed by Dubé, Hitsch, and Jindal (2014), consumers appear to be

much less forward-looking than economic theory implies, with average discount rates of 0.43. Dubé,

Hitsch, and Jindal (2014) also find substantial heterogeneity in discount factors across individuals.

The reason why the discount factor is typically not estimated in discrete choice dynamic pro-

gramming problems stems from an identification problem: If the researcher does not impose any

functional form assumptions on the structure of the current period utility function, the discount

factor cannot be identified (see Rust (1994), Magnac and Thesmar (2002)). Researchers use this

as a reason for fixing the discount factor using the prevailing interest rate, instead of estimating it.

However, if the true discount factor is significantly different from the one calibrated by the interest

rate, the rest of estimated structural parameters will likely be biased, and so will corresponding

counterfactual policy predictions.

Recently, Magnac and Thesmar (2002) and Fang and Wang (2015) have argued that if a dynamic

model has exclusion restrictions, then the discount factor can be identified. Roughly speaking,

exclusion restrictions occur when there exists at least one state variable that impacts a consumer’s

future payoffs, but not her current payoffs. The intuition behind how this leads to identification of

the discount factor is that if a consumer is completely myopic, then the consumer’s choice should

be independent of that variable. The extent to which a consumer’s choice is influenced by the state

variable when the exclusion restrictions hold provides information about how forward-looking the

consumer is. However, despite this recent development, most recent research that models forward-

looking consumers still fixes the discount factor according to the interest rate. This is because the

state variables of these dynamic models do not provide exclusion restrictions.

Our paper contributes to the literature by arguing that in the context of consumer stockpiling,

one of the key state variables, inventory, provides natural exclusion restrictions if the storage cost

is modelled properly.2 Our key insight is that in many product categories, a consumer’s current

payoff depends on the storage cost of inventory, and the storage cost is not affected by changes in

inventory unless a package of a product runs out. As a result, for most inventory levels a consumer’s

current payoff does not vary with inventory. To illustrate this insight, consider an example drawn

from the laundry detergent market. Suppose a consumer has a single bottle of laundry detergent

For example, Seiler (2013) uses a value of 0.998.

2By “natural exclusion restrictions,” we mean the exclusion restrictions are well-justified by the institutional

details of the environment being studied.
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in her home. This consumer has a habit of wearing clean clothes every day, and as a result does a

single load of laundry every week. If the consumer is forward-looking, as she keeps consuming the

laundry detergent, she may worry that if she does not buy another bottle soon when the price is

low, she may be forced to buy it at a higher regular price when she uses it up in the near future.

This sense of urgency will become stronger as inventory (i.e., the amount of detergent in the bottle)

runs down, and her demand would appear to become more sensitive to price cuts. Moreover, for

any amount of inventory remaining, the more forward-looking a consumer is, the more intense this

feeling of urgency will get.

We establish that the above intuition can be formalized by developing a proof that under

relatively mild conditions, all the parameters of a stockpiling model, and in particular the discount

factor, can be uniquely identified. This is a useful contribution to the literature on identification,

because Abbring and Daljord (2018) recently have shown that even when a dynamic model has

an exclusion restriction, the discount factor may not be point identified. The intuition behind our

identification proof is that the discount factor is increasing in the rate at which an individual’s

purchase probability changes with inventory at high levels of inventory, relative to low levels of

inventory, for levels of inventory where storage costs are fixed (where the exclusion restrictions

hold). For a relatively myopic individual, her purchase probability will only start to increase

substantially when she gets very close to running out, resulting in an estimated discount factor

that is small. The rest of the model parameters (i.e., stockout costs and storage costs) can then be

derived from the equations which define choice probabilities at different inventory states. We should

highlight that in the previous structural stockpiling models, researchers assume that storage costs

increase continuously with inventory. However, this seemingly innocuous simplifying assumption

rules out our identification arguments. If the storage cost function is convex and continuous, even

a myopic individual’s purchase probability will increase smoothly and at an increasing rate as

inventory drops, making identification of forward-looking behavior difficult.

We demonstrate the managerial relevance of estimating the discount factor with an empirical

exercise, where we estimate a dynamic structural model of consumer stockpiling on scanner data

for laundry detergents, both allowing the discount factor to be free, and fixing it to the rational

expectations benchmark. We then construct a counterfactual pricing scenario and show that the

expected revenues from changing the pricing process for a popular detergent brand can be sensitive

to the discount factor. As far as we know, our paper is the first to empirically recover consumer

discount factors in field data for a stockpiling problem. We additionally allow for individual-level

unobserved heterogeneity in the discount factor, and find that consumers differ substantially in

their myopia. About one-quarter of the population has discount factors that are close to 1, which
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is consistent with the rational expectations benchmark. The rest of the population is much less

forward-looking, and has discount factors that are spread between 1 and about 0.05. In particular,

the average discount factor is 0.71, and the first tertile is 0.62, which are both much less than the

rational expectations benchmark. Most of this heterogeneity seems to be driven by unobserved

factors, a finding that is also consistent with Dubé, Hitsch, and Jindal (2014).

Turning to our pricing counterfactual, we compare the impact of changing the the pricing

policy of a popular laundry detergent product on quantity sold and revenue, under the model with

estimated discount factors, and the model that imposes the rational expectations assumption. In

the laundry detergent category, many stores use a hi-lo pricing strategy, where prices stay fixed at

a regular retail price for most of the time, but for short periods dip to a low price of about 25% less

than the regular retail price. Periodic promotions such as this are designed to encourage stockpiling,

as forward-looking consumers will time their purchases to occur when promotions happen. In our

counterfactual pricing exercise, we increase the depth of promotions, and find that the rational

expectations model specification predicts an increase in both quantity sold and revenue due to the

policy that is about 15% higher than the forecast from the model specification where the discount

factor is estimated. To see the intuition behind this counterfactual result, suppose that individuals

are very forward-looking. As one increases the attractiveness of promotions for a particular product,

forward-looking individuals will be more likely to wait for promotions to occur on that product, as

opposed to purchasing something else, as their inventory drops. One will overstate the strength of

this effect the more forward-looking one assumes individuals are. We note that we also examine the

impact of increasing promotional frequency, but find that this pricing policy is overall less effective

at affecting product sales, and is insensitive to the discount factor.3

The rest of the paper is presented as follows. In Section 2, we discuss related work. In Section 3

we present the exclusion restrictions, and Section 4 develops our identification proof. We describe

our empirical application in Section 5, while the counterfactuals are described in Section 6. Section

7 concludes.

2 Review of Literature

Proofs of identification for dynamic discrete choice models often build on the conditional choice

probability approach introduced in Hotz and Miller (1993), who assume that all state variables

that are observed to the researcher, and there is no unobserved heterogeneity across consumers.

3The higher effectiveness of promotional depth relative to frequency has been found in prior work by Osborne

(2018b) under the assumption of a fixed discount factor.
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In this setting, under a set of regularity conditions on the error term, one can flexibly estimate a

consumer’s choice specific value, which is the sum of the current period flow utility and the discount

factor multiplied by the value function. The choice specific values are identified conditional on a

normalization of the utility of one alternative (typically called the reference alternative), and given

the functional form of the error distribution. With no restrictions on the functional form of the

flow utility, the discount factor is not identified: In the conditional choice probability approach, one

can roughly think of each moment as corresponding to the probability of a consumer choosing each

alternative at each value of all the state variables. A fully flexible model would allow the utility

function to be unique for each alternative and each state. Hence, if the discount factor were fixed,

the number of moments and unknowns would be equal, and the model would be exactly identified.

Formally, to identify the discount factor, some restrictions must be put on the utility function.

Such restrictions will reduce the number of parameters in the model to be smaller than the number

of moments, allowing the discount factor to be identified.

One type of restriction that has been proposed to help identify the discount factor is called an

exclusion restriction. As explained in the introduction, this restriction requires the dynamic model

to have at least two values of state variables, where for some choice alternatives, the current flow

utilities remain unchanged but the expected future value could differ. Magnac and Thesmar (2002)

is widely cited as the first paper which shows how exclusion restrictions can identify the discount

factor. However, it should be pointed out that their exclusion restriction is defined in a way that is

quite different from the definition that we use here. It is difficult to give an economic interpretation

to the exclusion restriction used in Magnac and Thesmar (2002). Fang and Wang (2015) were the

first to characterize the definition of the exclusion restriction in the way that we use. More recently,

Abbring and Daljord (2018) show that the Fang and Wang (2015) exclusion restrictions may not

allow for the discount factor to be point identified.4 In our setting, we show that we can obtain

point identification under the case of multiple exclusion restrictions (Abbring and Daljord (2018)

also show this in the context of other models).

To our knowledge, in the empirical literature there are only a handful papers that explore

such an identification argument to estimate consumer’s discount factor or her incentive to consider

future payoffs (Chung, Steenburgh, and Sudhir (2013), Lee (2013), Ching, Erdem, and Keane

(2014), Chevalier and Goolsbee (2009), Ching and Ishihara (2018), Ishihara and Ching (2012)).

These papers investigate sales force compensation schemes, rewards programs, consumer learning,

4Fang and Wang (2015) discuss identification of three discount factor parameters: the geometric discount factor,

hyperbolic discounting, and näıveté. Abbring and Daljord (2018) show that the case of geometric discounting is a

singular case in Fang and Wang (2015)’s proof, and present a proof of identification for this case.
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and how the price of used goods affects the demand for new goods. As far as we know, none of

the published research on structural models of consumer stockpiling have attempted to estimate

the consumer discount factor (e.g., Erdem, Imai, and Keane (2003), Hendel and Nevo (2006a),

Chan, Narasimhan, and Zhang (2008), Seiler (2013), Liu and Balachander (2014), Pires (2016),

Sun (2005)). This is probably because previous structural models on consumer stockpiling all

have assumed that the storage cost is an increasing and continuous function of inventory. This

simplifying assumption, though convenient, has ruled out the exclusion restrictions that we use

in our identification arguments. As a result, all previous structural empirical work on consumer

stockpiling fixes the discount factor to be consistent with the interest rate, instead of estimating

it.5 Our paper is the first to argue that by properly modelling storage cost as a step function of

inventory, this key state variable provides natural exclusion restrictions that can help identify the

model’s parameters, including the discount factor.

On-going research by Akça and Otter (2015) describes an alternative mechanism by which

inventory can be used to identify the discount factor. They show theoretically that if consumers

use brands within inventory in a last-in-last-out order, consumption rate are constant, and there

is no unobserved heterogeneity across individuals, the discount factor can be identified. Although

they do not estimate discount factors from field data, they present some survey evidence that

could support the last-in-last-out assumption: If individuals are holding multiple packages of a

product, they prefer to finish the one that is already open rather than opening another one. In

contrast to the approach that we present, the approach of Akça and Otter (2015) has advantages

and disadvantages. One advantage of our approach is that it is likely computationally easier to

implement in practice. To implement the Akça and Otter (2015) approach, one would have to track

an individual’s inventory composition in terms of brands. In many product categories, there are

many different brands available (for example, in our empirical exercise we include 19 brands), and

it would be infeasible to track a state space with many brands. In contrast, if one implements our

approach, at most one needs to track the composition of inventory in terms of package sizes held,

which is much more tractable. In many packaged goods categories individuals primarily choose

from 3 to 5 different package sizes. Another advantage of our approach is that it does not rely

on any particular assumption related to the order of consumption of brands within inventory. In

5Note that with the assumption that the storage cost is an increasing and continuous function of inventory, a

consumer has an incentive to wait longer before buying a new bottle, since the storage cost keeps dropping as

inventory shrinks. This has the opposite effect of the increase in expected stock-out cost as the inventory drops.

Therefore, the models used in previous work do not have clear implications about consumer purchase behavior as

inventory drops.
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particular, if one is willing to assume that storage costs are zero, one needs to make no assumption

on the order of consumption. If storage costs are increasing, then it is necessary to make some

assumption about the order in which different package sizes are consumed, but that assumption

can be anything the researcher wishes - it is not limited to last-in-last-out. A potential advantage

of Akça and Otter (2015)’s approach over ours is that it can be applied to product markets where

storage costs do continuously increase as inventory increases, such as potato chips, rice or dried

beans.

We note that in both our paper, and in Akça and Otter (2015), our theoretical proofs of iden-

tification rely on all states being observed to the researcher, and on the absence of unobserved

heterogeneity across consumers, which is standard in the literature. Although in applications in-

ventory is technically unobserved, since consumption is unobserved, if the assumption of constant

consumption rates is reasonable then the consumption rate can be estimated separately from the

model, and one can impute inventory given an assumption about initial inventory. As a result,

one can treat inventory as observed. Nevertheless, to show that identification can still be achieved

even if inventory cannot be imputed (for example, if consumption rates are stochastic), in Online

Appendix L, we present evidence from numerical simulation and solution of the model with unob-

served inventory that the shape of the purchase hazard can lead to identification of the discount

factor. We also show in monte carlo exercises that one can still estimate the discount factor from

simulated data. With respect to unobserved heterogeneity, one can technically identify individual-

level heterogeneity if one observes a long panel of purchases, as we do (we estimate our model on 3

years of scanner data). To show that the heterogeneity can be identified in practice, we perform an

artificial data experiment (Online Appendix G) where we simulate purchases given our estimated

parameters from field data, and show our estimation procedure recovers the mean and standard

deviations of the underlying parameters.

Finally, it is worth noting that Geweke and Keane (2000), Houser, Keane, and McCabe (2004)

and Yao, Mela, Chiang, and Chen (2012) explore another identification strategy which requires the

current payoffs are either observed or can be recovered from a static environment first. Yao, Mela,

Chiang, and Chen (2012) assume consumers solve a dynamic programming problem and use this

strategy to estimate the discount factor. Because Geweke and Keane (2000) and Houser, Keane,

and McCabe (2004) do not assume consumers solve a dynamic programming problem, they recover

the expected future payoffs but cannot separately identify the discount factor.
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3 Exclusion Restrictions in the Stockpiling Model

In this section we develop a model of consumer stockpiling that is simplified somewhat from the

model we will use for our empirical application, but contains its most important features. We

use this model to show how our exclusion restrictions can be used to identify all of the model

parameters.

We assume that the econometrician observes a market containing N consumers making purchase

decisions over T periods. Consumers are forward-looking and discount the future at a discount rate

βi < 1. In this stylized model, we assume that a single product is available to consumers in

some discrete package size. Each decision period t is broken up into two phases which happen

sequentially: (i) a purchase phase, and (ii) a consumption phase.

In the purchase phase, consumer i observes her inventory (Iit), the price of a package of the

product (pit), an exogenous consumption need (ci), and a choice-specific error (εijt). The consumer’s

choice is her decision of how many packages of the product to buy, which we denote as j ∈

{0, 1, ..., J}. After making her purchase, the consumer enters her consumption phase, and receives

her consumption utility.

We denote the size (or volume) of a package as b, and for simplicity of exposition we assume that

b is an integer. We denote the consumer’s inventory (which will also be integral) at the beginning

of the period as Iit. We also make the assumption of integral inventory for convenience in the

theoretical sections; it is straightforward to extend the model to continuous inventory, which we

do in the empirical application. We assume that consumption rates are constant over time (but

may vary across individuals), which is an assumption that we maintain in the empirical model. We

note that this assumption makes our proofs of identification simpler, but is stronger than necessary

(in particular, we discuss the case of unobserved and time-varying consumption rates in Online

Appendix L). An advantage of the assumption of constant consumption rates is that they can be

estimated from purchases prior to estimation of any empirical model; we provide support for this

approach in our application in Online Appendix B. We assume that consumption rates are integral

and lie in the set {0, 1, 2, ..., c}. If the consumer’s inventory at the end of the purchase phase, which

we denote as Iit + b · j, is above the consumption need ci then she receives consumption utility γi.

If she cannot cover her consumption need then she incurs a stockout cost νi.
6 At the end of the

period, the consumer incurs a storage cost s(·;ωi). Inventory will generate exclusion restrictions if

6We assume that the stockout cost does not depend on the consumption need but this assumption is innocuous.

We could also assume that the stockout cost is proportional to the difference between inventory and the consumption

shock, and our identification results will be unaffected.

9



there are some values of I for which s(·;ωi) does not change. Our first assumption related to the

exclusion restrictions, stated below, formalizes this restriction on storage cost.

First Model Assumption Related to Exclusion Restrictions, X1

1. The storage cost function s is only a function of the number of packages held at the end of

the period, B, rather than inventory I, and the package size b > 1.

The number of packages held can be written as the following function of inventory: Bi,t+1(j, I, ci) =

dmax{(Iit + b · j − ci)/b, 0}e.7 The assumption that b > 1 ensures that X1 is meaningful. ωi is a

vector of parameters determining how storage costs vary with the number of packages held. For

now, we allow the storage cost function to be non-parametric:

s(B;ωi) = ωi,B. (1)

We will assume that the cost of storing 0 packages is 0. In practice, one may consider imposing

a functional form on s. One possibility is that the storage cost could be close to zero up to some

limit, and then it goes up dramatically. For instance, many households’ laundry room has reserved

space for a few bottles of laundry detergent. In general, there will be a limit on how many packages

a household can store, and we denote this limit as M .

The assumption that a consumer’s storage cost depends on the number of packages held is

valid for many product categories. For example, products that are sold in bottles or boxes such as

laundry detergent or breakfast cereal will likely satisfy this assumption; products such as potato

chips where the package size can be shrunk as the product is used up would likely not. The cost

to storing laundry detergent depends on the amount of space taken up by the bottle, but not the

amount of liquid within the bottle.

We note that Assumption X1 will help generate exclusion restrictions, but on its own it is

not enough. Our exclusion restrictions would be violated if utility were continuously increasing in

consumption, as individuals would optimally consume more at higher levels of inventory. To ensure

that consumption utility does not increase with inventory, we make a second assumption as follows:

Second Model Assumption Related to Exclusion Restrictions, X2

2. The consumption need is not a function of inventory.

Intuitively, this assumption says consumers receive no additional utility from consuming more

than their consumption needs. A limitation of our work is that this assumption can only be applied

7The ceiling function d·e returns the smallest integer that is greater than or equal to its argument.
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to a limited number of product categories, in particular, those which an individual would use on

a regular basis or as a need arises. Such product categories could include cleaning products such

as dishwashing or laundry detergent, or condiments such as ketchup or mustard (it is unlikely

that people derive additional utility from putting more mustard than necessary on a hot dog,

for example). In particular, this assumption may not hold for product categories such as snacks

or sweets where the temptation to consume may rise with larger inventory stocks (e.g., Chan,

Narasimhan, and Zhang (2008), Sun (2005)).

Even if we maintain Assumptions X1 and X2, our model may not generate exclusion restrictions

if the consumption need, ci, only took on values that were multiples of the package size, as storage

costs would always change when inventory changed. To guarantee the existence of exclusion restric-

tions, the researcher would need to observe consumer’s choice for at least three values of inventory

per package size where storage costs do not change.

Third Model Assumption Related to Exclusion Restrictions, X3

3. There are at least three inventory levels per package size where storage costs do not change,

and the maximum number of packages an individual can hold is at least two: c ≤ b/3,M ≥ 2.

The restriction in X3 will ensure that for most inventory levels consumers face, the number of

packages held will remain unchanged (and hence storage costs will also stay the same). We note

that in our application, it needs to be the case that the exclusion restriction holds for at least

three levels of inventory in order to generate point identification of β, and that the researcher can

observe choice probabilities when either one or two packages are held, which we will prove in Section

4 below. We note that if βi = β for all consumers, then the assumption that c ≤ b/3 is stronger

than necessary for identification. In that case, it would simply need to be the case that there is

one level of the consumption rate, ci, where ci ≤ b/3 and a sufficient number of individuals have a

consumption rate ci that choice probabilities can be estimated for all individuals at these inventory

levels. Exclusion restriction X3 is likely to hold for product categories such as laundry detergent,

ketchup, etc., where individual consumption needs are a small fraction of a package size. It would

likely be violated for product categories where every time consumption occurs, a package is used

up (such as canned tuna or canned soup).

Given this information, we can write down the consumer’s flow utility as follows:

uit(j, Iit, εijt, pit, ci;θi) (2)

=

 γi − s(Bi,t+1(j, I, cit);ωi)− αipitj + εijt if Iit + b · j ≥ cit
−νi − αipitj + εijt otherwise

,
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where θi = (αi, βi, γi, νi,ωi) is a vector of the consumer utility coefficients and the discount factor,

εijt is a choice-specific error, αi is the price coefficient. Additionally, γi and νi cannot be separately

identified. Hence, we normalize γi = 0.8

We assume that consumers believe that the product’s price follows a stochastic Markov process

with a transition density F (pi,t+1|pit). Denoting the vector of choice-specific errors as εit, the

consumer’s Bellman equation can be written as follows:

Vit(Iit, pit) = Eεit max
j=0,...,J

{uit(j, Iit, εijt, pit, l;θi) + βiEpi,t+1|pitV (Ii,t+1, pi,t+1)}. (3)

The transition process for the inventory state variable Iit is

Ii,t+1 = max{Ii,t + b · j − ci, 0}.

We assume that if a consumer makes a purchase when her inventory is above Mb − ci, then

her inventory is set to the upper bound Mb. Intuitively, this is consistent with a situation where a

consumer’s storage space is used up, but if she purchases another bottle, she takes the one that is

already open and gives it away or otherwise disposes of it.

4 Theoretical Identification: Proof

In this section, we present a constructive proof of the identification of the model presented in Section

3. Our proof relies on the researchers being able to estimate choice probabilities as a function of

states, and shows that one can derive formulas for all the model parameters in terms of these choice

probabilities. We make six additional assumptions below:

Assumptions A1-A6

1. In a given purchase occasion, the maximum number of packages a consumer is allowed to buy

is 1.

2. Prices are fixed over time at a level p.

3. All model parameters are the same for all individuals, and the consumption rate, ci = 1.

4. The choice-specific error term, εijt, follows a type-1 extreme value distribution.

5. Inventory, Iit, is observed to the researcher.

8It can be shown that if we reduce γi by ε > 0 and add ε to νi, the difference in choice-specific utility remains

unchanged at all inventory states.
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6. The stockout cost, ν, is positive.

We make A1 and A2 for convenience. It would be straightforward to extend our proof to allow

individuals to choose more than 1 package, and to incorporate price transitions, but the notation

would be more complicated. Assumptions A3-A5 are standard assumptions used in the literature

on identification of dynamic discrete choice models (Fang and Wang (2015), Abbring and Daljord

(2018) and Akça and Otter (2015) all maintain these assumptions). Unobserved heterogeneity can

be included if the researcher has a panel dataset where the time dimension is large relative to the

panel dimension. In that case, a consistent estimate of individual-level choice probabilities could be

obtained, and one could compute individual-level parameter estimates. Assumption A4 allows us to

obtain closed-form solutions for the model parameters in terms of choice probabilities, but can be

relaxed as long as the error distribution is well-behaved (Rust (1994), Magnac and Thesmar (2002)).

A5 is a standard assumption, which is reasonable if consumption rates are constant and some

estimate of inventories at the beginning of the researcher’s estimation sample can be constructed.

A6 is necessary for stockpiling to occur - if ν = 0, individuals will not stockpile and purchase

probabilities will always be constant. In Online Appendix L, we provide numerical evidence on

how identification may still be obtained if A5 is relaxed (i.e., consumption rates are stochastic).

We note that our discussion in Online Appendix L is not a theoretical proof of identification with

unobserved states; such a proof is beyond the scope of this paper.

Below, we define a rank condition that is necessary for identification of β.

Rank Condition R1

Let P̂ (I) denote the empirical probability of purchase at inventory level I. There exists two

levels of inventory, I and I + 1 where the exclusion restrictions hold and P̂ (I) 6= P̂ (I + 1), and

log((P̂ (I + 2))− log(P̂ (I + 1))− (log(P̂ (I + 1))− log(P̂ (I))) + (4)

log(1 + (1− P̂ (I + b+ 1))/P̂ (I + b+ 1))− log(1 + (1− P̂ (I + 1))/P̂ (I + 1))−

log(1 + (1− P̂ (I + b))/P̂ (I + b))− log(1 + (1− P̂ (I))/P̂ (I)) 6= 0.

Theorem 1 Suppose Assumptions A1-A5 and our exclusion restrictions X1-X3 hold. If rank con-

dition R1 holds, then the parameters of the stockpiling model, α, β, ν, and ω1 through ωM , can be

globally identified.

Proof. Denote P̂ (I) as the observed probability of purchase at inventory level I. Define vj

to be the choice-specific value of buying j packages at inventory level I and parameter vector

θ = (α, β, ν, ω1, ..., ωM ):
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vj(I;θ) = −αp1{j = 1} − ωB(j,I,1) − ν1{I = 0}+ βV (max{I + bj − 1, 0}). (5)

Under the logit error assumption, we can write the choice probabilities in terms of choice-specific

values as follows,

∆ log(P̂ (I)) ≡ log(P̂ (I))− log(1− P̂ (I)) = v1(I;θ)− v0(I;θ). (6)

If a consumer can hold up to M packages, then the number of parameters we need to identify is

M + 3: these are the M different values of ωB, the stockout cost ν, the discount factor β, and the

price coefficient α. Below, we show that all the parameters of the model can be expressed in terms

of choice probabilities. Details of the derivations are provided in Online Appendix A.

Suppose first that Rank condition R1 holds. We show in Online Appendix A that rank condition

R1 implies that β > 0.9 If we define

Φ̂(I) ≡ log

(
1 +

P̂ (I + b)

1− P̂ (I + b)

)
− log

(
1 +

P̂ (I)

1− P̂ (I)

)
,

then for β > 0, we can express β as

β̂ =
∆ log(P̂ (I + 2))−∆ log(P̂ (I + 1))

∆ log(P̂ (I + 1))−∆ log(P̂ (I)) + Φ̂(I + 1)− Φ̂(I)
(7)

for a value of I > 1 and I such that storage costs do not change over the interval I through I + 2.

The exclusion restrictions assumptions (X1-X3) will guarantee that such an interval can be found,

and rank condition R1 implies that a solution for β exists since Equation (4) is not 0. The price

coefficient, α, can be derived from the purchase probability when an individual’s inventory reaches

the capacity constraint:

α̂ = −∆ log(P̂ (Mb))

p
.10

Given (β̂, α̂), the stockout cost, ν, and the storage cost for one package, ω1, can be expressed as

9The case of β = 0 is straightforward. If choice probabilities are flat for all inventory levels belonging to the same

package, we can infer that β = 0.

10We note that the identification of α arises from the assumption that when an individual has M packages in

inventory she disposes of the package that is currently begin used and sets her inventory level to Mb. In general it

would be preferable to obtain identification of the price coefficient from price variation, rather than an assumption

about how inventory is filled up when a consumer reaches her maximum storage capacity.
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the solution to the system of linear equations, β̂b−1−1

1−β̂
2β̂−β̂b−1

1−β̂
β̂b−1

1−β̂
β̂−β̂b+1

1−β̂

 ω̂1

ν̂

 =

 α̂p−∆ log(P̂ (0)) + β̂h0(β̂)

α̂p−∆ log(P̂ (1)) + β̂h1(β̂)

 , (8)

where the terms h0 and h1 are functions of β and choice probabilities P̂ for inventory values

between 0 and b (these functions are defined in Online Appendix A). Note that the above system

of equations is derived from the purchase probabilities at inventory levels of 0 and 1. Higher values

of storage costs such as ω2 through ωM can be derived from the choice probabilities at inventory

levels 2, b+ 2, 2b+ 2, and so on. In particular, one can derive ω̂2 as

ω̂2 = −α̂p+ ω̂1 + β̂(V (b+ 1)− V (1))−∆ log(P̂ (2)), (9)

where we show in Online Appendix A that one can express V (b + 1) and V (1) in terms of choice

probabilities, and the parameters β̂, α̂, and ω̂1. In general,

ω̂B = −α̂p+ ω̂1 + β̂(V ((B − 1)b+ 1)− V ((B − 2)b+ 1))−∆ log(P̂ ((B − 1)b+ 2)), (10)

where the value function difference V ((B − 1)b + 1) − V ((B − 2)b + 1) is a function of choice

probabilities and parameters that we have already solved for α, β, ν, ω1, ..., ωB−1.

4.1 Theoretical Identification: Discussion

In this section, we provide some additional comments on the interpretation of equation (7) in

Theorem 1, which defines β, and discuss the implications of relaxing the assumptions of constant

consumption rates and observed inventory. First, we note that although global identification po-

tentially fails if rank condition R1 fails, this occurence should be a knife-edge case that would occur

with probability zero in actual datasets. We provide support for rank condition R1 in our empirical

application in Section 5.3.

We provide details on how the formula for β in equation (7) is derived in Online Appendix

A. Importantly, in the derivation we show that in order to express β only in terms of choice

probabilities, we need to solve two moment conditions,

∆ log(P̂ (I + 1))−∆ log(P̂ (I)) = β(V (I + b)− V (I)− (V (I + b− 1)− V (I − 1))) (11)

∆ log(P̂ (I + 2))−∆ log(P̂ (I + 1)) = β(V (I + b+ 1)− V (I + 1)− (V (I + b)− V (I))), (12)
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where the exclusion restrictions hold for I, I + 1, and I + 2, and the value function differences can

be expressed in terms of β and choice probabilities. In the standard formulation of the exclusion

restrictions, one would invert a single one of the above equations (i.e., equation (11) at a particular

value of I) to arrive at β. Abbring and Daljord (2018) have recently shown that for general discrete

choice dynamic problems, multiple values of β can be a solution to a single moment condition

(resulting from a single exclusion restriction), an issue that arises in our setting as well. To show

this, in the left panel of Figure 1 we plot an individual’s expected future value of making a purchase,

β(V (I + b)− V (I)), as a function of inventory at different β values, for a numerical solution of the

model in Section 3.11 Note that for a given value of β, the slope of the expected future value curve

corresponds to the right hand side of equation (11).12 If one were to use a single moment condition

to solve for β, one would compute the value of the left hand side of equation (11) at some level of

inventory, and then find a β where the slope of the expected future value curve is equal to that

value. However, it can be seen from the figure that this slope is not monotonic in β: for low levels of

β, the slope gets larger in magnitude as β rises, but for high values of β it decreases in magnitude.

This non-monotonicity suggests that two values of β can solve a single moment condition. In Online

Appendix A, we show that by using two moment conditions (differencing equations (11) and (12)),

we can rule out one of the solutions for β.

The formula for β derived in equation (7) has an intuitive interpretation: It suggests that β is an

increasing function of the ratio of how much purchase probabilities decrease with inventory at high

levels of inventory, as compared to low levels of inventory. To support this interpretation, in the

right panel of Figure 1, we plot the theoretical purchase probabilities as a function of inventory and

β for the same model parameterization. The purchase probability curve flattens out as inventory

increases because the disutility of a future stockout is discounted more for higher inventory values.

For a relatively myopic individual, this disutility will not become apparent until inventory levels

are low, and will be significantly discounted at high levels of inventory. As a result, the purchase

probability curve flattens out more quickly for a more myopic individual. For a forward-looking

individual, the disutility from a future stockout will matter even at higher levels of inventory,

resulting in less curvature of the purchase probability function. Lower curvature of the purchase

11We set p = 3.31, ν = 0.33, α = 1, b = 8, M = 3, and storage costs to zero, corresponding to the median values

of the parameter estimates from our empirical exercise. The value of p corresponds to the average price of the most

popular size. The value b = 8 is in line with the amount of time it takes an average consumer to use up the most

popular size of detergent in the data. See Online Appendix B for more details.

12In Online Appendix K, Propositions 1 to 3, we provide proofs that the expected future value of a purchase

decreases with inventory, and increases with β when storage costs are sufficiently small.
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probability function will bring the numerators and denominators of equation (7) closer together,

producing an estimate of β that is closer to 1. The patterns we show in Figure 1 are robust to

increasing the size of storage costs (see Online Appendix Figures 5 and 6), increasing the weight

on the error term relative to utility (Online Appendix Figure 7), and allowing for individuals to

purchase difference package sizes (Online Appendix Figure 9).
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Figure 1: Expected future payoff from purchase, β [V (I ′1(I))− V (I ′0(I))] (left panel), and theoretical

purchase probability (right panel), as a function of I and β, for storage costs of zero. Parameter

values ν = 0.4, M = 3, p = 3.31, and logit error term. Note that I ′1(I) ≡ I−1 + b is an individual’s

next period inventory if a purchase is made, and I ′0(I) ≡ max{I − 1, 0} is future inventory if no

purchase occurs.

Before proceeding to the empirical application, we comment briefly on identification in situations

where inventory is unobserved to the researcher. In our empirical application, we assume that

consumption rates can be estimated outside of the model, and given we assume that inventories

are zero several years prior to the beginning of the estimation data, we can construct an estimate

of a household’s inventory level every week. However, in applications where consumption rates

are stochastic, such an imputation may not be possible, meaning that it will not be possible to

estimate choice probabilities at different inventory states. In Online Appendix L, we investigate

the identification of a similar version of the stockpiling model with stochastic consumption rates

and unobserved inventory using numerical simulations.

To summarize, we find that the purchase hazard, which is the average probability that an

individual makes a purchase, given the last purchase occurred τ periods in the past, has similar

properties to the purchase probability graph in the right panel of Figure 1. Intuitively, time since

last purchase is a proxy for inventory, and the purchase hazard will flatten out as β increases.
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Our numerical results also suggest that there may be a potential identification failure between

consumption rates and the stockout costs, as these two parameters have similar effects on the

purchase hazard when β is small. This result provides an additional justification for our assumption

that we should calibrate consumption rates outside the model. We also provide a series of artificial

data experiments (Online Appendix L.3), where we simulate a dataset with unobserved inventory

and stochastic consumption rates, and show that we can recover the underlying model parameters.

We note that the exclusion restrictions are still likely to be useful in helping with identification

even if there are some unobserved states, as they restrict the number of parameters available to

fit the moments that are observed to the researcher (the purchase hazard). A formal identification

proof is beyond the scope of this paper and we leave it to future research.

5 Empirical Application

5.1 Data and Sample Construction

To quantify the substantive implications of identifying the discount factor, we estimate a stockpiling

model using individual level IRI data in the laundry detergent category (Bronnenberg, Kruger, and

Mela 2008). An observation in our data is a household-week pair. We observed individual purchases

between the years 2001 through 2007. The final 3 years of the data are used to estimate the model

parameters (our model likelihood is constructed for these years), while the first 4 are used to

construct initial inventories. In our sample we include households who only purchase the 5 most

popular sizes of detergent: the 50 oz, 80 oz size, 100 oz size, the 128 oz size, and the 200 oz size. We

restrict the sample to include households who purchase from the top 25 brands by overall purchase

share. We also allow consumers to purchase up to 5 bottles of a size, because sometimes individuals

will purchase multiple bottles of a given brand in a single week. We remove households who ever

purchase different products within the same week (this is very infrequent), or who purchase more

than 5 bottles of a product in a week. We also restrict the sample to include individuals whose

purchase behavior looks like it is not missing purchases of detergent: a panelist might make a

purchase of detergent, but not scan their receipt, meaning it would not be recorded in the data.

To do this, we only include households who make at least 5 purchases between 2005 and 2007,

and for whom the maximum number of weeks between purchases is smaller than 40 weeks. After

applying these exclusions, we compute a household level consumption rate by computing the sum

of total quantity over the seven year window, and dividing by the total number of weeks over which

purchases are observed (some households enter or exit the data after 2001, or before 2007, so the

length of the observed purchase history may not always be 7 years). We then impute inventory in
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Table 1: Summary Statistics of Purchase Data

Number of households 312

Avg interpurchase time (weeks) 9.9

Fraction of weeks with 0 bottles bought 0.898

Fraction of weeks with 1 bottles bought 0.077

Fraction of weeks with 2 bottles bought 0.018

Fraction of weeks with 3+ bottles bought 0.025

Fraction of purchases where 100 oz size chosen 0.712

Fraction of purchases where 128 oz size chosen 0.136

Fraction of purchases where 200 oz size chosen 0.088

Fraction of purchases where 50 oz size chosen 0.037

Fraction of purchases where 80 oz size chosen 0.027

the period of the estimation sample by assuming inventory is zero in 2001, and calculating inventory

forward using the imputed consumption rates. We exclude any households for whom we predict

the household would stock out (have zero inventory) for 10 or more weeks in a row. After these

exclusions, the estimation sample contains 312 households.

Some statistics on household purchase behavior are shown in Table 1. An average household

makes a purchase about every 10 weeks, and in most weeks no purchase occurs. In our sample, the

most frequently purchased bottle size is the 100 oz bottle, followed by the 128 oz bottle. Table 2

shows the purchase shares (the number bottles purchased of a particular brand divided by the total

number of bottles purchased in the sample) as well as average prices (in cents per ounce) for each

brand purchased by households in the sample (When constructing the sample we initially include

the top 25 brands by purchase share. After reducing the sample to 312 households by removing

those who purchase too infrequently or who purchase too much, only 19 brands have positive

purchases). Prices vary significantly across brands, but also within each brand-size combination.

We show that prices vary over time for a particular product (a brand-size combination) in two ways:

by documenting price variation at the household level, and at the store level. At the household

level, we compute the coefficient of variation of prices for all available brand-size combinations.

The average within-household coefficients of variation are shown in Table 3. For most products,

the standard deviation of prices that are observed by the household are about 15 to 20 percent

of the average price, implying that households observe a substantial amount of price variation for

each product from trip to trip.
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Table 2: Brand Level Purchase Shares and Prices

Brand Purchase Share Price (Cents Per Ounce)

Tide 23.8 8.61

Xtra 8.9 2.48

Purex 9.2 4.81

All 7.9 5.64

Arm & Hammer 8.8 4.71

Era 5.9 5.25

Dynamo 11.7 4.58

Wisk 10.3 6.31

Private Label 3.8 3.51

Cheer 2.1 7.12

Fab 1.4 6.08

Yes 2.1 4.51

Ajax Fresh 0.4 3.19

Gain 0.5 6.16

Ajax 0.4 3.14

Trend 0.4 2.22

Sun 0.8 4.33

Solo 1.3 3.88

Ivory Snow 0.3 10.41

Notes: Purchase shares show the number of packages purchase of each brand

in our trip-level data of 36,101 trips. The prices are the averages of prices,

measured in cents per ounce, observed by a given household in a given trip,

for brands that were available on that trip.

Similar amounts of variation in the data occur at the level of a store as well. Within a given

store, a product’s price tends to follow a pattern that is typical of many packaged goods in scanner

data, where the price has a high regular price and periodically falls to a lower deal price for a

short time period (for example, Online Appendix Figure 4 shows the time series path of the price

of the 200 OZ size of Tide at a frequently-visited store). To quantify how often products go on

deal at all stores in the data, for each available product we computed the average regular price,

the average deal price, and the fraction of store-week observations where the product is on deal.

When a product is put on sale, the deal price is typically 20 to 30 percent below the regular price,

and deals typically happen in 20 to 30 percent of weeks (Online Appendix Table 19). In summary,
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Table 3: Within Household Coefficient of Variation of Prices for Available Brand-Sizes

Brand 100 oz 128 oz 200 oz 50 oz 80 oz

Tide 13.81 - 14.65 13.9 13.03

Xtra - 10.91 7.51 - -

Purex 17.71 15.4 11.06 10.43 -

All 12.8 - 10.64 10.92 16.58

Arm & Hammer 16.94 - 11.45 - -

Era 17.1 - 4.8 2.46 -

Dynamo 21.1 - 14.83 - -

Wisk 14.3 - 15.86 - 17.42

Private Label 13.89 8.76 - 5.26 -

Cheer - - - - 7.76

Fab 11.73 - - 18.82 -

Yes 19.14 - - - -

Ajax Fresh - 12.3 - - -

Gain 14.06 - 7.24 - -

Ajax - 11.8 - - -

Trend - 2.14 - - -

Sun 24.52 - - - -

Solo 21.79 - - - -

Ivory Snow - - - 6.71 -

Notes: The numbers in this table are constructed using our estimation sample,

which was created by combining IRI’s purchase panel, household trip panel,

and store price panel. For each brand-size that exists in the sample, we compute

at the household level the coefficient of variation. The estimates are calculated

using 36,101 trips in our estimation data.
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households will observe a significant amount of price variation over time for all products. Such

price variation will encourage households to stockpile if they are forward-looking.

5.2 Estimation Details

This section outlines the estimation procedure used to recover the model parameters. Since we

wish to include unobserved heterogeneity in many of our model parameters, we use the modified

Bayesian MCMC algorithm proposed by Imai, Jain, and Ching (2009) to estimate the model.13

Although we find evidence in Section L.3 that stockpiling models can in principle be identified

under relatively flexible specifications of the storage cost function and distribution of consumption

shocks, in practice such flexibility can greatly increase the computational burden of estimation. We

have found two problems with including time-varying consumption shocks in the model. First, as

we outline in Online Appendix L, the distribution of consumption shocks is difficult to separately

identify from the stockout cost, and so we expect that the parameters governing the consumption

shock draws would need to be normalized. Indeed, although Hendel and Nevo (2006a) incorporate

normally-distributed i.i.d. consumption shocks in their stockpiling model, they do not estimated the

mean and variance of the consumption shock process. Second, when we investigated incorporating

such shocks into the model we found that modeling stochastic consumption shocks would add to the

computational burden of estimation since the shocks need to be integrated out while estimating the

other model parameters. As we use MCMC to estimate our model, we would need to add another

Gibbs step to our estimation routine where we draw the consumption shocks for every individual

and every period in the data. Moreover, for standard distributions of consumption shocks (such as

a normal distribution) the posterior density of the shocks given the data will not have a form that

is easy to draw from, necessitating the use of a Metropolis-Hastings step. Adding this step to the

algorithm substantially slows down convergence.14

As a result, we assume that consumption needs may vary across individuals, but are fixed over

time. We also note that this assumption with respect to consumption needs means that we can

impute a household’s inventory, given an assumption about initial inventories. We assume that con-

sumer inventory is 0 at the beginning of the pre-estimation period in 2001; given this assumption

and a household’s estimated consumption rate we can calculate the household’s inventory in any

13Hendel and Nevo (2006a) propose a three step method for estimating stockpiling models that uses maximum

likelihood, but their approach cannot allow for unobserved heterogeneity across individuals. Ching, Imai, Ishihara,

and Jain (2012) provides a practitioner’s guide to the IJC approach.

14Some earlier empirical work on stockpiling such as Hendel and Nevo (2006a) and Sun (2005) has included

stochastic consumption shocks, but those papers did not model unobserved preference heterogeneity as we do.
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period. In Online Appendix B, we verify both of these assumptions are reasonable by i) showing

that the distribution of imputed consumption rates across households looks realistic, and is corre-

lated with household observables in ways that make sense, ii) showing that the imputed inventory

measures make sense: first, most households hold around 3 bottles of detergent, and decreases

in household inventory are highly correlated with purchase. This correlation becomes especially

strong for low levels of imputed inventory.

The other issue we introduced in the previous paragraph related to the specification of the

storage cost function and the way inventory is modeled. Significant computational complications

arise in situations where individuals can choose among more than a single size of bottle or brand.

In our dataset individuals choose among X = 5 different package sizes and K = 18 brands. Adding

multiple brands and package sizes to the empirical model will increase the size of the state space.

This is because one would need to: (i) track inventory and price for each brand; (ii) track the

number of bottles of each size held in inventory, and model the order in which different sizes of

bottles are consumed. The inventory composition would matter to the consumer since her storage

cost will decrease as she uses up a bottle. A consumer who has two small bottles in her inventory

will lower her storage cost more quickly than someone who has two large bottles. An additional

complication is that multiple package sizes would require us to model the order in which packages

are consumed. For instance, if a consumer has a large bottle and a small bottle in her inventory,

we would have to decide whether she would use the small bottle before the large one, or vice versa.

Below we will first describe how we handle the issues arising from including different bottle sizes,

and then from including multiple brands.

We deal with the computational issues arising from incorporating multiple bottle sizes in two

ways. Our preferred method is to assume storage costs are zero, which is the model we present as

our main specification. Under this restriction on storage costs, it is not necessary for an individual

to track inventory consumption in the state space, and it is not necessary to make any assumption

regarding the order in which bottles are consumed in inventory. In an earlier version of the paper,

we estimated a similar specification in which we imposed a bound on the amount of inventory an

individual could hold. We found that our estimates of the bound were very high, and so in later

versions of the work we have removed the bound.15

As a robustness check, in Online Appendix J we present estimates from an extended model

where we allow for increasing storage costs. A detailed description of the model parameterization

is presented in Section D. Our estimated storage costs from this version of the model suggest that

15In practice we need to bound the state space, and so we assume that an individual can hold at most 4,800 ounces

of detergent, which is about 50 regular sized bottles.
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for the vast majority of the population, storage costs are very low. In order for the model with

increasing storage costs to be computationally tractable, we had to make a number of simplifying

assumptions. First, we have to limit the number of bottles an individual can hold. We set this

bound to 6 bottles, since our imputed inventory measures suggest that most individuals do not hold

more than this (Online Appendix B). Second, we assume that bottles are used according to a first-

in-first-out rule. Third, even with these assumptions, the number of possible bottle composition

states an individual can reach is extremely large if there are 5 bottle sizes. To keep the size of the

state space manageable, we bin the 100, 80 and 128 ounce sizes together (we assume that all of these

sizes contain 100 ounces of detergent), and we treat states that are rarely visited as inadmissable

(if an individual makes a purchase that would lead to such a state, we assume that the bottle

purchased is removed from inventory, and impose a utility penalty). Because the estimates of the

extended model are consistent with the zero storage cost model, we present the latter in the main

paper because it is simpler, and does not rely on as many simplifying assumptions.

To deal with issues arising from including brand differentiation, we follow Hendel and Nevo

(2006a) and make two simplifying assumptions: (i) consumers only care about brand differentiation

at the time of purchase, and (ii) a form of inclusive value sufficiency modified from what Hendel and

Nevo (2006a) proposed (the modifications we use were introduced in Osborne (2018a)). Assumption

(i) means that all utility from consuming a particular brand arises when a consumer makes a

purchase, and at the time of consumption only the overall level of inventory matters.16 This implies

that the composition of the inventory (in terms of brands) does not matter, and it drastically reduces

the size of the state space. One interpretation of this assumption, propose in Hendel and Nevo

(2006a), is that consumption is drawn equally from all packages held. The main model specification

presented in the paper is consistent with this assumption, because it does not impose any order

on consumption from different packages within inventory. Moreover, such an assumption may

be behaviorally realistic in the laundry detergent market, since customers may purchase multiple

brands for different purposes (such as washing colors, whites, baby clothes, etc). We assume that the

flow utility received from a particular brand scales linearly with the number of packages purchased:

the flow utility from purchasing j packages of size x and brand k is equal to j
J ξikx, where one of

the ξikx coefficients is normalized to zero, and J = 5 is the total number of bottles an individual is

allowed to buy.17 The assumption that brand utility scales with the number of packages purchased

16Formally, assumption (i) means that the consumption utility, γi, does not depend on the brand purchased (as we

argued earlier, the parameter γi is not identified so we normalize γi = 0).

17We note that for the normalized brand, the mean flow utility will not scale with j, but the flow utility from the

idiosyncratic error and price disutility will (see Online Appendix E.3). The assumption that utility scales linearly

24



relates the inclusive value sufficiency assumption (ii), and we will show below that it will help

reduce the size of the model’s state space. The consumer’s flow utility function from buying j > 0

units of size x of brand k can be written down as:

uit(k, x, j, Iit, εijt, pit, ci;θi) (13)

=


j
J ξik − s(Bi,t+1(j, Iit, ci);ωi)− αipixktj + εijxkt if Iit + b(x)j ≥ ci

j
J ξik − νi

cit−(Iit+b(x)j)
ci

− αipixktj + εijxkt otherwise
,

where b(x) is the number of ounces in a bottle of size x. Before we write down the Bellman equation,

we need to clarify the elements of the consumer’s choice set. Consumers can either purchase nothing

(j = 0), or purchase j > 0 units of a single brand-size combination (k, x). Denoting the feasible set

of (j, k, x) combinations as C, the consumer value function can be written as:

Vit(Iit,pit) = Eεit max
(j,k,x)∈C

{uit(k, x, j, Iit, εijkt,pit, ci;θi) + βiEpi,t+1|pitV (Ii,t+1, pi,t+1)}, (14)

where pit is a vector of brand-size level prices. Our second assumption of inclusive value sufficiency

(IVS) simplifies the state space by assuming that rather than tracking individual prices, consumers

track the expected flow utility arising from each available package size, which are the inclusive

values. The standard formulation of IVS used in Hendel and Nevo (2006a) relies on the assumption

of logit errors, and under their formulation the number of inclusive values equals the number of

available package sizes, X, multiplied by the number of packages an individual can purchase, J .

Osborne (2018a) shows that the number of inclusive values one needs to track can be further

reduced to only the number of available package sizes, X, under the assumption that flow utility

scales with the number of packages purchased, coupled with an assumption that the choice specific

error can be written in the form of a nested logit. The nesting structure has the choice of bottle size

and number of bottles (x and j) in the outer nest, while the inner nest is the choice of brand, k, for a

given bottle size. The inclusive value parameter for the brand choice nest is set to be j
J ; division by

the number of packages an individual can choose, J , is necessary for the inclusive value parameter

to be between 0 and 1, which ensures the density of the error is well-behaved (Cardell (1997)). The

nested logit formulation of the error just described, along with the assumption that the flow utility

scales with j, allows the j parameter to be factored out of the expected brand-specific utility, and

as a result the inclusive values do not depend on j.

with quantity purchased may be strong in some cases, especially if individuals purchase many packages at once, as

marginal utility from additional purchases could start to decrease. In our setting, we think this is likely less of an

issue since most people only buy 1 or 2 packages at a time.
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Denoting C1 as the set of feasible (j, x) combinations and C2(x) as the set of brands which are

available in size x, the two aforementioned assumptions entail that an individual’s expected utility

over brands for choosing j packages of size x can be written as,

j

J
Ωit(x) =

j

J
ln

 ∑
k∈C2(x)

exp (ξixk − Jαipixkt)

 .

Details on the above derivation are shown in Online Appendix C. To summarize, our implemen-

tation of IVS assumes that consumers track Ωit(x), rather than each individual price pixkt. As a

result, the Bellman equation in equation (14) can be written as

V (Iit,Ωit) = ln

 ∑
(j,x)∈C1

exp

{
j

J
Ωit(x)− νi

ci − (Iit + bj)

cit
1{Iit < ci}+ βiEΩit|Ωi,t−1

V (Ii,t+1,Ωit)

} ,(15)

where Ωit is an X-dimensional vector of inclusive values for all package sizes.

In addition to the different specification used for storage cost, we make three additional minor

changes to the model specification from the specification used for artificial data experiments. First,

we incorporate a fixed cost of purchase, FCi, which is the disutility a consumer receives from

making a purchase. We found it necessary to include this parameter in order to properly fit the

low frequency of purchase we observe in the data.

Second, rather than estimating consumption needs we calibrate them from the data. Consistent

with what we note in Online Appendix L.1, we found it difficult to identify both the consumption

rate and the stockout cost together, and this problem seemed especially pronounced when the

discount factor was low. Thus, we set each individual’s consumption rate to the total quantity

purchased over the estimation period, divided by the total number of weeks where the individual

is observed. To ensure our results are not materially affected by this assumption, we perform a

robustness exercise where we increase every individual’s consumption rate by 25% and re-estimate

the model.18 We find our parameter estimates are relatively insensitive to the consumption rate.

The estimated parameters from this specification are presented in Online Appendix J, Table 24.

In the data, there are some weeks where some consumers do not visit any store. During such

weeks, the individual’s inventory evolves, but does not make any purchase (x = 0). To capture this,

the third change we have made is that we assume there is an exogenous probability a consumer goes

18If an individual always purchases more of a product at the time she runs out, which we might expect with

necessities such as laundry detergent, the calibrated consumption rate will equal the underlying consumption rate.

We have found in simulations that if stockout costs are low enough that individuals sometimes wait a few periods

after running out to make a purchase, the calibrated rate somewhate understates the actual consumption rate.
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to the store, which we estimate prior to estimating the other model parameters. This probability

is incorporated into consumers’ expectations when they update their value functions in equation

(15).19

For simplicity of our exposition below, we outline how the solution of the model works when it

is assumed that consumers always visit a store. In terms of unobserved heterogeneity, we include

as much richness as possible. In particular, most of our product shifters are heterogeneous, as well

as the price coefficient, the cost of stocking out, and the discount factor.20

The basic steps of the algorithm are as follows:

1. Draw the population-varying parameters using Metropolis-Hastings,

2. draw the means and of population-varying parameters,

3. draw the variance of population-varying parameters,

4. draw the population-fixed parameters using Metropolis-Hastings, and

5. update the value function.

We describe how we implement steps 1 to 4 in Online Appendix E.1, and step 5 in Online

Appendix E.2. Some other details related to the construction of the inclusive value transition

process and setup of the MCMC chain are described in Online Appendices E.3 and E.4.

5.3 Identification Assumptions and the Data

In this section, we discuss evidence that the assumptions necessary for the proof of identification

in Section 4 are satisfied in our data. First, we note that the exclusion restriction assumptions X1

(discontinuous storage costs) and X2 (exogenous consumption rates) must be imposed from theory.

X1 is true for our setting, since liquid laundry detergents are sold in plastic bottles of fixed sizes.

X2 is also behaviorally sensible: Bottles of laundry detergent come with guidelines on how much

to use when washing a load, and so individuals are unlikely to gain or lose additional utility from

deviating from these guidelines.

19Occasionally, a household will make multiple trips in a single week wihtout buying detergent. Since our analysis

is done at the weekly level, we make an assumption about which store is the household’s focal store. We tabulate

for each household how often they visit each store, and assume the store in which the laundry detergent purchase

decision was made was the store that was visited more often.

20In general, in a random coefficients model at least some coefficients must be normalized to guarantee identification

(Ruud 1996).
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Table 4: Dynamic Parameter Estimates

Parameter 1st Tertile Median Mean 2nd Tertile

Price Coefficient -0.29 -0.24 -0.27 -0.21

[-0.31, -0.28] [-0.26, -0.23] [-0.29, -0.26] [-0.22, -0.2]

Stockout Cost 0.29 0.39 0.48 0.5

[0.24, 0.36] [0.31, 0.49] [0.37, 0.66] [0.4, 0.67]

Discount Factor 0.62 0.94 0.71 0.99

[0.14, 0.89] [0.81, 0.98] [0.58, 0.82] [0.98, 1]

Fixed Cost of Purchase - - -1.83 -

[-1.91, -1.77]

Log-likelihood -19585.37

Deviance Information Criterion 40510.98

Notes: This table shows average moments of the posterior distribution of the population distribution of the

dynamic parameters. Only the mean is shown for parameters that are fixed across the population. For

example, the median columns shows the average of the population median of a given parameter, where the

average is taken across MCMC draws. Square brackets show 95% confidence intervals.

We provide evidence in support of X3 (at least 3 periods are necessary to use up a package) in

Online Appendix B, where we present summary statistics on the imputed consumption rates for

the households in our data. In particular, we find that the majority of households do at most 4

or 5 loads per week. The most popular sizes of detergent contain 32 or 64 loads, and so it will

take individuals around 8 weeks to use up a bottle. The maximum consumption rate in the data

is about 13 loads per week, and even for this consumption rate it will take a household five weeks

to use up a 200 ounce bottle of detergent.

Identification of the stockpiling model also requires that Rank condition R1 holds, which is

supported by the data. In particular, in Online Appendix B we regress a dummy variable for

whether an individual makes a purchase in a given week on a flexible function of the measure of

imputed inventory used in the structural model. Recall that we calculate imputed inventory by

assuming that inventory is zero in an individual’s first purchase 3 years prior to the beginning of the

data set, and then compute inventory iteratively by adding purchases in a period, and subtracting

consumption on a period.21 The regression estimates show that choice probabilities decrease with

21This imputation will be correct as long as during the 3 year pre-estimation period, each individual runs out of

inventory at some point. The reason for this is that the imputed inventory will be smaller than or equal to actual

inventory in the initial pre-estimation week, and so whenever actual inventory is zero, imputed inventory will also be
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inventory in regions of the state space where the exclusion restrictions should hold. For instance,

in Table 8, in the region of the state space where an individual has 0 to 50 ounces, the estimated

purchase probabilities decrease in inventory, and we know the exclusion restrictions hold for levels

of inventory in this range because there are no bottle sizes smaller than 50 ounces. The regression

estimates also provide support for Assumption A6 (positive stockout cost), as choice probabilities

increase drastically when inventory is zero.

To verify Rank Condition R1 (equation (4)), we do a back-of-the-envelope calculation. Suppose

that an individual holds 40 ounces of a 100 ounce bottle in inventory, and has a weekly consumption

rate of 4 loads (c = 12.5 ounces) per week, and is considering purchasing another 100 ounce bottle

(so b = 100). Then one can calculate the predicted purchase probabilities implied by the regression

model in Table 8 at the inventory levels I = 40, I + c = 52.5, I + 2c = 65, I + b = 140 and

I+b+c = 152.5 using the regression estimates, and an estimate of equation (4) in R1 is -0.07504.22

Note that equation (4) is the denominator of the formula for β in equation (7). We can also use

the implied choice probabilities from the regression to solve for a back-of-the envelope estimate

of β from equation (7). The estimated probabilities at the aforementioned inventory values imply

a β of 0.32. This is lower than the estimate of β derived from the structural model (the model

controls for price variation and allows for purchases of different brands and bottle sizes), but it does

suggest that individuals are more myopic than the rational expectations benchmark. We provide

additional evidence that the empirical model can recover the model parameters, including the

unobserved heterogeneity, in Online Appendix G, where we simulate purchases from the estimated

model parameters, and then estimate the model on the simulated data and recover the underlying

parameters.

5.4 Estimation Results

This section presents our estimation results. We run the MCMC sampler for 20,000 iterations,

and drop the first 10,000 to reduce dependence on initial starting points. The MCMC algorithm

appears to converge after about 2,000 to 3,000 draws, so our cutoff point is conservative (see Figure

15 of Online Appendix M). Table 4 shows the estimates of the main parameters that affect an

individual’s dynamic decision: the price coefficient, stockout cost, discount factor, and fixed cost of

purchase. All of these parameters vary across the population, and are transformations of draws from

a normal prior distribution with diagonal variance (the transformation applied to each parameter

zero.

22The predicted purchase probabilities at these values of inventory are P (I) = 0.164, P (I+ c) = 0.139, P (I+2c) =

0.132, P (I + b) = 0.11, and P (I + b+ c) = 0.106.
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is discussed in Online Appendix E). We show the 33rd, 50th, and 66th percentiles as well as the

population mean. To compute an estimated moment, for example the 33rd percentile of the price

coefficient, first for each Gibbs draw we compute the 33rd percentile of the population distribution

of parameter draws for the price coefficient. The estimated 33rd percentile is the average of the 33rd

percentiles over all 10,000 saved Gibbs draws. The second row shows the 95% confidence bounds

on each of the estimated moments. There is a significant amount of heterogeneity in all of these

model parameters. Additionally, the magnitudes of the parameters indicate that price sensitivities,

stockout costs, and fixed cost of purchase have significant effects on purchase behavior. A similar

table showing the estimated parameter distributions for product-specific parameters are shown in

Online Appendix Tables 20 and 21. We note that we include unobserved heterogeneity in most

product-level taste coefficients. For some of the smaller share brands, we found that we had to make

the coefficients homogeneous across the population. Additionally, for most products we separately

estimate brand and size taste coefficients: an individual’s taste for a particular product is the sum

of the brand coefficient plus the size coefficient. We did this because we do not observe a lot of

purchases for many products and so it would be difficult to separately identify such coefficients. For

some of the larger share brands, such as Tide, we do include taste coefficients that are brand-size

specific, as we can identify those coefficients and allowing additional flexibility improves the model’s

ability to fit purchase shares.

Turning to the discount factor, the population average of the weekly discount factor is about

0.71, which is much lower than the value of 1/(1 + 0.05)(1/52) ≈ 0.9995 that one would calibrate

from the annual interest rate of 5%. There is also a significant amount of heterogeneity in discount

factors. The upper tertile of the distribution of discount factors are around 0.99, and close to the

rational expectations benchmark. On the other hand, the lower tertile of the distribution of discount

factors is 0.62, indicating a substantial number of individuals are myopic. This heterogeneity can

also be seen in Figure 2, where we plot a kernel density of the average estimated discount factor

for the population (for each individual, we compute the average of the discount factor estimate for

all saved draws). The individual estimates suggest there is a mass of individuals who are forward-

looking, and the rest of the population is spread out until the discount factor is about 0.1 or 0.05.

Although our estimated discount factors are less than the rational expectations benchmark assumed

in past work, low estimated discount factors are consistent with some other field studies that allow

the parameter to be free (for example, Yao, Mela, Chiang, and Chen (2012) estimate in data on

cellular phone usage that consumer discount factors are around 0.91). In the specification presented

in the main text, we did not interact the heterogeneous parameters with demographic coefficients,

because in artificial data experiments we found it difficult to precisely recover the coefficients of the
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demographic interactions. We present an auxiliary specification in Online Appendix J, Table 11

where we include demographic interactions. Most of the interactions are not statistically different

from zero (expand on this when they are put in).

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
5

1.
0

1.
5

Discount Factor Estimate

D
en

si
ty

Figure 2: Kernel Density of Individual-Specific Discount Factor Estimates.

Taking our results at face value, it may be tempting to argue that our estimates suggest con-

sumers are irrational, as a weekly discount factor of 0.71 would imply that consumers are close to

being myopic when making financial decisions where the time horizon is on the order of a year.

However, a discount factor in the range of our estimated value is also consistent with a setting

where consumers think several weeks ahead when they make their purchase decisions.23 Since con-

sumer packaged goods are small ticket items, such a short planning horizon may be reasonable and

could be rational behavior taking into account scarce mental resources. When making important

financial decisions, consumers may behave in a more forward-looking way due to the fact that more

money is at stake - there are larger gains from planning over a longer horizon and hence it is worth

using more mental resources to think further ahead.

To understand how our results would change if we assume individuals are rational, we estimated

the structural model again using a discount factor of 0.9995, the rational expectations benchmark.

The estimates of the dynamic parameters are presented in Table 5. It is notable that the rational

expectations benchmark produces a worse fit to the data, which can be seen in that is has both a

lower log-likelihood and higher deviance information criterion. We provide additional comparisons

of model fit in Online Appendix F, where we show that the main specification provides an improved

23It seems implausible that consumers plan years ahead for laundry detergent purchases.
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Table 5: Dynamic Parameter Estimates: Discount Factor Fixed at 0.9995

Parameter 1st Tertile Median Mean 2nd Tertile

Price Coefficient -0.31 -0.27 -0.29 -0.23

[-0.33, -0.3] [-0.28, -0.26] [-0.3, -0.28] [-0.24, -0.22]

Stockout Cost 0.27 0.33 0.36 0.39

[0.24, 0.3] [0.29, 0.37] [0.32, 0.41] [0.34, 0.45]

Fixed Cost of Purchase - - -1.89 -

[-1.98, -1.81]

Log-likelihood -19768.02

Deviance Information Criterion 40773.41

Notes: This table shows average moments of the posterior distribution of the population distribution of the

dynamic parameters. Only the mean is shown for parameters that are fixed across the population. For

example, the median columns shows the average of the population median of a given parameter, where the

average is taken across MCMC draws. Square brackets show 95% confidence intervals.

fit to interpurchase times, purchase probabilities given inventory levels, and price sensitivity. In-

terestingly, the other parameter estimates are similar, except that using the rational expectations

assumption produces a slightly bigger stockout cost, which is intuitive. If individuals discount the

future at a higher rate, the stockout cost will have a bigger effect on purchase likelihoods. As we will

show in Section 6, the counterfactual predictions of the model can differ significantly as well if an

incorrect discount factor is used. The driving force behind this difference is more forward-looking

individuals will try harder to time their purchases to coincide with temporary price discounts.

In addition to the specifications discussed above, as additional robustness checks we also esti-

mate a myopic version of the model, where the discount factor is set to zero, and a version of the

model where we increase the calibrated consumption rates by 25%. The myopic model also pro-

vides a worse fit to the data than the model where we estimate the discount factor, with a marginal

log-likelihood of -19629.16 and a deviance information criterion of 40560.51. The estimation results

for the specification with higher consumption rates are presented in Online Appendix J, Table 24,

with qualitatively similar results. The distribution of discount factors still suggests a lot of spread,

with the upper quartile around 1. The average discount factor is a little lower, at 0.6.

Finally, in Online Appendix J, Table 11 we present estimates from a version of the model with

increasing storage costs. As we describe in Online Appendix D, in order to make estimation of this

version of the model tractable we must make a number of additional assumptions. In particular,

we assume consumers can hold up to six bottles, that consumption order occurs according to a
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first-in-first-out rule, that states which are rarely visited in the data are inadmissable, and we bin

together the 80 ounce and 128 ounce sizes together with the 100 ounce size. We bin the 80, 100

and 128 ounce sizes together to keep the states space of the model tractable. Recall that for each

individual in the data, we track value functions on a grid of 100 price points; as we discuss in Online

Appendix D, the number of inventory points we track is 17, which is smaller than the number used

for the model without increasing storage costs. When we include an additional state to track the

composition of inventories in bottle sizes, the size of the state space increases exponentially. In

particular, if we were to include all 5 sizes, the number of states would be multiplied by 19,531.

With only 3 bottle sizes, we only add 1,093 states. As we noted, we only track states that are visited

in the data more than 5% of the time - this restriction reduces the number of states to 23, since

many individuals repeatedly purchase only one or two different sizes. Even with our restrictions,

we still must track 39,100 state space points for each household in the data, making this version of

the model very computationally burdensome to estimate.

Additionally, to keep the number of parameters tractable, we assume that storage costs increase

quadratically in volume held.24 We emphasize that we do impose the exclusion restriction in the

storage cost function in this model specification: storage costs are quadratic, but only change if a

bottle is used up. The estimated parameters suggest that storage costs are very close to zero for

most of the population. The storage cost parameters can be interpreted as the disutility incurred

from an increase in inventory of 100 ounces, or equivalently, the disutility of holding a certain

number of 100 ounce bottles. For example, for the median consumer the disutility from holding 3

100 ounce bottles would be 0.0153, which is very small compared to the disutility of a one dollar

increase in price, or of stocking out. The distribution of discount factors is qualitatively similar to

the main results, with a significant spread and an upper quartile of close to 1. The average discount

factor is somewhat lower at about 0.55. The main other difference between this specification and the

results presented above is the lower stockout cost estimate. It is not surprising that this parameter

is smaller, because we impose a tighter bound on how much people can store. If people sometimes

hold inventories above our bound, the model will rationalize that behaviour with a higher stockout

cost parameter. Finally, it is notable that the specification with increasing storage costs provides a

much worse fit to the data (the deviance information criterion of this model is 44091.65, versus the

estimate of 40510 for the main specifiction). This again is likely a result of our restrictions related

24Technically, we could allow a separate parameter for every possible value that storage costs could take, which

would depend on the number of bottle combinations that an individual could hold. As we discuss in the text, we

allow for 23 different bottle compositions. Adding an additional 23 parameters, with unobserved heterogeneity, would

likely be infeasible and raise concerns about overfitting.
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to inventory and that individuals treat the 80, 100 and 128 ounce sizes as the same, when these

sizes have different shares in the data.

6 Counterfactuals

In our counterfactual exercises, we quantify the extent to which the model predictions can go wrong

if the rational expectations assumption is incorrectly maintained. We assess two counterfactual

exercises which vary the time series of price promotions: One is to increase the promotional depth,

and the other is to increase the frequency of promotions.25 Both of these counterfactuals will affect

consumer stockpiling behavior, by inducing forward-looking individuals to stockpile more. We

compute counterfactual quantities and revenues given a counterfactual price series by re-running

the IJC procedure at the saved parameter draws for each estimation run. In particular, for a given

draw, we simulate purchases, and then update the value function. This updated value function

is saved for the next parameter draw, where we simulate choices given the next draw, and so on.

Computing the counterfactuals in this way allows us to put confidence bounds around them (Ching,

Imai, Ishihara, and Jain 2012).

In total, we compute simulated choices under six scenarios. The first three are done using the

main model estimates, where we estimated individual-specific discount factors. Here, we simulate

choices at i) the prices observed in the data, ii) given a larger promotional depth for the 100 oz

Tide product, and iii) given a higher promotional frequency for the 100 oz Tide products. We also

compute the same three counterfactuals using our estimates from the model specification with the

discount factor fixed at the rational expectations benchmark. To increase promotional frequency,

our procedure is to first identify deals in the store data using IRI’s supplied price reduction flag. If

the number of observed deals for a particular store-upc-year combination is N , we then double the

number of promotions for that particular store-up-year by taking all non-deal prices, and randomly

assigning N of those observations to be deals. To construct the price at the new deal observations,

we multiply the observed regular retail price by the average discount observed in that particular

store-upc-year. To increase promotional depth, we identify all promotional prices for our focal

UPCs, and then divide the prices by 2.

The simulated changes in quantities and revenues for 100 oz Tide are shown in Table 6. At

the estimated parameters, when promotions are deepened, the number of bottles sold rises by 502

units. In contrast, if one assumes rational expectations, one significantly overpredicts the effect

25Both of these counterfactual exercises were examined in Osborne (2018b) in the context of stockpiling, under the

assumption of a fixed discount factor.
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Table 6: Counterfactual Effect of Changes in Promotional Process on Quantities and Revenues

Estimated Discount Factor Rational Expectations

Counterfactual Quantity Revenue Quantity Revenue

Increased Depth 502.72 1018.48 576.95 1183.98

[448, 560] [777.49, 1256.67] [514, 641] [916.38, 1452.15]

Increased Frequency 49.34 232.99 55.19 276.34

[-11, 110] [-214.35, 679.05] [-7, 118] [-171.78, 734.91]

Notes: This table shows the average estimated change in number of units sold (quantity) and

revenues for each of the counterfactual price processes in the rows, compared to simulated choices

from the prices observed in the data. The results are shown for the 100 OZ bottle of Tide. 95%

confidence bounds are shown in brackets.

of deeper promotions on units sold. This is intuitive: When price promotions are made better,

it is more worthwhile for forward-looking individuals to wait for them, rather than purchasing a

different product or purchasing at a higher price. The counterfactual exercise also results in an

overprediction of the revenue increase by about 10%, although the two estimated effects lie within

each others’ confidence bounds. In contrast, the impact of an increase in promotional frequency

is relatively insensitive to the rational expectations assumption. Part of the reason for this is

that overall, individuals seem less response to increases in promotional frequency than promotional

depth (this finding is replicated in a different product category in Osborne (2018b), under the

assumption of a fixed discount factor). In summary, using the rational expectations benchmark

when it is inappropriate can generate incorrect forecasts, particularly if the objective is to forecast

the impact of better promotions.

7 Conclusion

Consumer stockpiling behavior in packaged goods categories is often cited as an example of a

situation where consumers are forward-looking. However, previous research (most notably, Erdem,

Imai, and Keane (2003), Hendel and Nevo (2006a)) assumes (i) consumer are homogeneous in their

discount factors, and (ii) consumers do not arbitrage and hence discount factor can be set according

to the prevailing interest rate. Moreover, previous research has imposed smoothness assumptions

on the storage cost function, assuming it to be continuous in inventory. We emphasize that this

seemingly innocuous simplifying assumption rules out exclusion restrictions which naturally arise

from the institutional features of this problem, which is why previous work fixed the discount
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factor rather than estimating it. By properly modelling storage cost as a step function of inventory

(because storage cost only depends on the number of packages stored), the key state variable of

this model, inventory, provides natural exclusion restrictions that can help identify the parameters

of this model, including the discount factor. In our estimation results based on field data for

laundry detergent, weekly discount factors average at around 0.71, lower than the value of 0.9995

this is obtained if one uses a common interest rate to set it. These differences are large, and are

managerially relevant: if a brand manager were to assume individuals were very forward-looking,

she would significantly overpredict the impact of offering better discounts on quantity sold. In

our application, increasing promotional depth for a product drives more brand switching the more

forward-looking individuals are. However, since individuals use laundry detergent at a constant

rate and probably do not stock out for long periods of time, if a store manager were to offer better

discounts for all brands at once, it is unlikely that a significant increase in category sales would

arise.

There are many other avenues for future research on the relevance of forward-looking behavior.

Although we demonstrate that exclusion restrictions can hold for storable product categories like

laundry detergent, there may be ways to generate such restrictions in product categories where con-

sumption is endogenous. Additionally, forward-looking behavior is an important driver of durable

goods purchases, and estimating discount factors in those categories may generate additional in-

sights.
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ONLINE APPENDICES [Intended to be made available online.]

A Derivations of Parameters from Choice Probabilities

This section presents the derivations used in the constructive proof of identification presented in

Section 4. We use the notation from that section that vj(I) represents the choice-specific value for

option j at inventory level I. To start, recall that:

v1(I) = −αp− ωB(I)+1 + βV (I + b− 1), (16)

v0(I) = −ωB(I) − ν1{I = 0}+ βV (I − 1), (17)

where B(I) is the number of bottles held at inventory level I, and ω0 = 0.

We are interested in considering the difference in choice-specific value for these two options

because they are simply a function choice probabilities by Hotz and Miller (1993)’s Inversion The-

orem. For example, if an individual’s inventory I is in the range [2, ..., b+ 1], then the difference in

choice-specific values can be written as

v1(I)− v0(I) = −αp− (ω2 − ω1) + β[V (I + b− 1)− V (I − 1)] (18)

∆v(I) = −αp−∆ω(2, 1) + β[V (I + b− 1)− V (I − 1)], (19)

where ∆v(I) ≡ v1(I) − v0(I) = ln(P1(I)/P0(I)); ∆ω(2, 1) ≡ ω2 − ω1. ln(P1(I)/P0(I)) are the

observed choice probabilities at inventory level I.

Note that our exclusion restriction assumption implies that if we take the difference of ∆v(.) at

two different values of I that satisfy the exclusion restriction requirements, we can difference out

the current utility components.

ln(P1(I + 1)/P0(I + 1))− ln(P1(I)/P0(I)) = ∆v(I + 1)−∆v(I) (20)

= β[V (I + b)− V (I)− (V (I + b− 1)− V (I − 1))].

Note that if the LHS of (20) is not zero for any value of I where the exclusion restriction holds

(I > 1, and values of I not on the boundaries where storage costs change), that implies β > 0 by

contraposition. If the LHS of (20) is zero for all values of I where the exclusion restriction holds,

then it is clear that β = 0 rationalizes the observed choice probabilities. We note that in practice,

such a situation is a measure zero event and will never occur. Thus, in the derivation of β below

we assume β > 0. We use the definition of Emax and ln
(
P1(I)
P0(I)

)
= ∆v(I) (see Ching and Ishihara

(2018)) to derive,

v0(I) = V (I)− ln

(
1 +

P1(I)

P0(I)

)
. (21)
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Suppose WLOG that an individual has a single package in inventory. Then we can write,

V (I − 1) =
1

β
(v0(I) + ω1)

=
1

β

(
V (I)− ln

(
1 +

P1(I)

P0(I)

)
+ ω1

)
, (22)

where the second equality follows from Eq(21). Then we know that

V (I)− V (I − 1) = V (I)− 1

β

(
V (I)− ln

(
1 +

P1(I)

P0(I)

)
− ω1

)
=

(
1− 1

β

)
V (I) +

1

β

(
ln

(
1 +

P1(I)

P0(I)

)
+ ω1

)
.

Then using this expression for V (I)− V (I − 1), we can rewrite Eq(20) as

∆v(I + 1)−∆v(I) = β

[(
1− 1

β

)
V (I + b) +

1

β

(
ln

(
1 +

P1(I + b)

P0(I + b)

)
+ ω2

)
−((

1− 1

β

)
V (I) +

1

β

(
ln

(
1 +

P1(I)

P0(I)

)
+ ω1

))]
= (β − 1)(V (I + b)− V (I)) + Φ(I) + ∆ω(2, 1), (23)

where

Φ(I) = ln

(
1 +

P1(I + b)

P0(I + b)

)
− ln

(
1 +

P1(I)

P0(I)

)
.

Note that by the definition of v0, v1,

V (I + b)− V (I) =
1

β
(∆ω(2, 1) + αp+ v1(I + 1)− v0(I + 1)) .

Then plugging this into Eq(23), we get:

∆v(I + 1)−∆v(I) = (β − 1)

(
1

β
(∆ω(2, 1) + αp+ v1(I + 1)− v0(I + 1))

)
+ Φ(I) + ∆ω(2, 1)

=
β − 1

β
(v1(I + 1)− v0(I + 1)) + Φ(I) +

2β − 1

β
∆ω(2, 1) +

β − 1

β
αp.

To simplify the notation, denote ∆v(I) = v1(I)− v0(I). Then we can write the above equation as:

∆v(I + 1)−∆v(I) =
β − 1

β
∆v(I + 1) +A(I) +

2β − 1

β
∆ω(2, 1) +

β − 1

β
αp.

We can simplify the above equation to,

∆v(I) =
1

β
∆v(I + 1)− Φ(I)− 2β − 1

β
∆ω(2, 1) +

β − 1

β
αp. (24)
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Note that we cannot solve Eq (24) for β, as it involves ∆ω(2, 1). Thus, consider solving the system

of equations

∆v(I) =
1

β
∆v(I + 1)− Φ(I)− 2β − 1

β
∆ω(2, 1) +

β − 1

β
αp. (25)

∆v(I + 1) =
1

β
∆v(I + 2)− Φ(I + 1)− 2β − 1

β
∆ω(2, 1) +

β − 1

β
αp, (26)

where the exclusion restrictions hold for inventory levels I through I + 2. To solve for β, we can

subtract Eq(25) from Eq(26), which gives us the following equation:

∆v(I + 1)−∆v(I) =
1

β
(∆v(I + 2)−∆v(I + 1))− (Φ(I + 1)− Φ(I)).

We can solve the above equation to express β as a function of choice probabilities:

β =
∆v(I + 2)−∆v(I + 1)

∆v(I + 1)−∆v(I) + Φ(I + 1)− Φ(I)
(27)

=
∆ log(P (I + 2))−∆ log(P (I + 1))

∆ log(P (I + 1))−∆ log(P (I)) + Φ(I + 1)− Φ(I)
,

where

∆ log(P (I)) ≡ log(P1(I))− log(P0(I)) = ∆v(I).

The ∆v’s are differences in log choice probabilities, and Φ(I) depends on choice probabilities at

I + b and I. Note that to achieve identification of β, the researcher must be able to estimate

probabilities at five different inventory values: I, I + 1, I + 2, I + b, and I + b+ 1. For identification

to be possible, it needs to be the case that individuals can hold at least two packages (i.e., M ≥ 2),

and that the denominator of (27) is nonzero (a rank condition).

The price coefficient, α, can identified from the purchase probability when I = Mb, the maxi-

mum inventory bound. At this inventory level purchasing does not increase storage cost or affect

the value function. i.e.,

v1(Mb) = −αp− ωM + βV (Mb− 1),

v0(Mb) = −ωM + βV (Mb− 1).

As a result, α = −∆v(Mb)/p. As we discuss in the body of the paper, in general it is likely

preferred to appeal to price variation to identify α.

Given a solution for β, and assuming that α is also identified, we can solve for ω1 and ν. To do

this, we use the following equations which are derived from choice probabilities at inventory levels
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of 0 and 1:

∆v(0) = −ω1 − ν − αp+ β(V (b− 1)− V (0)), (28)

and

∆v(1) = −ω1 − αp+ β(V (b)− V (0)). (29)

Below, we show how to express the differences in values functions in Eq(28) and Eq(29) in terms

of parameters and choice probabilities. To start, we first derive the value function at I = 0:

V (0) = v0(0) + ln

(
1 +

P1(0)

P0(0)

)
= −ν + βV (0) + ln

(
1 +

P1(0)

P0(0)

)
.

Thus the equation for V (0) is

V (0) =
−ν

1− β
+

1

1− β
ln

(
1 +

P1(0)

P0(0)

)
.

Then we can write the equation for V (1) recursively as

V (1) = v0(1) + ln

(
1 +

P1(1)

P0(1)

)
= βV (0) + ln

(
1 +

P1(1)

P0(1)

)
=
−βν
1− β

+
β

1− β
ln

(
1 +

P1(0)

P0(0)

)
+ ln

(
1 +

P1(1)

P0(1)

)
.

and doing a similar manipulation with V (2) we have

V (2) = −ω1 −
β2ν

1− β
+

β2

1− β
ln

(
1 +

P1(0)

P0(0)

)
+ β ln

(
1 +

P1(1)

P0(1)

)
+ ln

(
1 +

P1(2)

P0(2)

)
.

In general, for 2 ≤ I ≤ b+ 1, we can write:

V (I) = −
I−2∑
i=0

βiω1 −
βIν

1− β
+

βI

1− β
ln

(
1 +

P1(0)

P0(0)

)
+

I−1∑
i=0

βi ln

(
1 +

P1(I − i)
P0(I − i)

)
= −1− βI−1

1− β
ω1 −

βIν

1− β
+ g(β, I, P0(0), P1(0), ..., P0(I), P1(I)),

where

g(β, I, P0(0), P1(0), ..., P0(I), P1(I)) =
βI

1− β
ln

(
1 +

P1(0)

P0(0)

)
+

I−1∑
i=0

βi ln

(
1 +

P1(I − i)
P0(I − i)

)
. (30)
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Therefore we can now write the value function differences as:

V (b− 1)− V (0) = −1− βb−2

1− β
ω1 +

1− βb−1

1− β
ν + h0(β),

V (b)− V (0) = −1− βb−1

1− β
ω1 +

1− βb

1− β
ν + h1(β),

where the h functions are defined as

h0(β) = g(β, b− 1, P0(0), P1(0), ..., P0(I), P1(I))− 1

1− β
ln

(
1 +

P1(0)

P0(0)

)
, (31)

h1(β) = g(β, b, P0(0), P1(0), ..., P0(I), P1(I))− 1

1− β
ln

(
1 +

P1(0)

P0(0)

)
. (32)

Therefore the two equations Eq(28) and Eq(29) which define the choice-specific values at states

0 and 1 can be rewritten as

∆v(0) =
βb−1 − 1

1− β
ω1 +

2β − βb − 1

1− β
ν − αp+ βh0(β), (33)

and

∆v(1) =
βb − 1

1− β
ω1 +

β − βb+1

1− β
ν − αp+ βh1(β). (34)

The ∆v(I) above are equal to ln(P1(I)/P0(I)), and the h functions depend only on beta (which

we have solved for in Eq((27)) and choice probabilities. Hence, the above defines a system of two

equations in two unknowns which we can use to solve for ν and ω1.

Given the solutions of the above parameters, we can recursively solve for the other storage cost

parameters, ω2 through ωM , in terms of choice probabilities and known parameters. First, consider

the parameter ω2. We can solve directly for ω2 using the choice probabilities at inventory states

I = 2 through I = b+1. The simplest formula for ω2 arises when we use I = 2, as the log difference

in choice probabilities at this state is

∆v(2) = −ω2 − αp+ ω1 + β(V (b+ 1)− V (1)),

and we have already solved for the parameters β, α, as well as the two value functions in terms of

choice probabilities, ω1, β, and α (if we used an inventory state higher than 2, the value function

difference above would depend on ω2 as well). Using derivations from above the value function

difference can be expressed in terms of choice probabilities and known parameters:

V (b+ 1)− V (1) = −1− βb

1− β
ω1 −

βb

1− β
ν + g(β, b+ 1, P0(0), ..., P1(b+ 1))

+
βν

1− β
− β

1− β
ln

(
1 +

P1(0)

P0(0)

)
− ln

(
1 +

P1(1)

P0(1)

)
,
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and one can express ω2 as

ω2 = −αp+ ω1 + β(V (b+ 1)− V (1))− (ln(P1(2))− ln(P0(2)).

We can solve for higher levels of the storage costs, i.e., ω3, ω4, etc, using the choice probabilities

at the inventory states I = b+ 2, 2b+ 2, .... For example, consider solving for ω3 at I = b+ 2. The

relevant difference in choice probabilities is

∆v(b+ 2) = −ω3 + ω2 − αp+ β(V (2b+ 1)− V (b+ 1)).

As was the case with the solution for ω2, we need an expression for the value function at 2b+ 1 ≥

I ≥ b+ 2, which is

V (I) = −
I−(b+2)∑
i=0

βiω2 −
I−2∑

i=I−(b+1)

βiω1 −
βIν

1− β
+

βI

1− β
ln

(
1 +

P1(0)

P0(0)

)
+

I−1∑
i=0

βi ln

(
1 +

P1(I − i)
P0(I − i)

)

= −1− βI−(b+1)

1− β
ω2 − βI−(b+1) 1− βb

1− β
ω1 −

βIν

1− β
+ g(β, I, P0(0), P1(0), ..., P0(I), P1(I)).

and it is straightforward to solve for ω3. The logic above can be extended to ω4, and higher values

of storage costs.

We should note that the proof here is much more involved than the one in Ching and Ishihara

(2018), who consider a simple dynamic store choice problem with rewards programs. They are able

to take advantage of the feature that the value of state variables (rewards points) remain unchanged

when one chooses the outside option. This feature allows them to significantly simplify the proof,

but it is not available in our model. In particular, unlike our proof, they did not make use of the

difference-in-difference (with respect to the choice specific value functions) restrictions at all.26

We provide a summary of which moment conditions we use to identify each parameter in Table 7.

The parameter α is identified from the choice probability at inventory level I = Mb. To identify β,

we exploit two moment conditions, which are the differences in the log ratio of choice probabilities

at two consecutive inventory levels. These inventory levels must be chosen where the exclusion

restrictions hold, and are chosen so they do not overlap with any of the moment conditions to use

any other parameters (hence the range of inventory values are {3, · · · , b−1}. For example, one could

use the moment conditions ln(P1(4)/P0(4))−ln(P1(3)/P0(3)) and ln(P1(5)/P0(5))−ln(P1(4)/P0(4)).

26Rossi (2017) applies the identification results in Ching and Ishihara (2018) to estimate consumer’s discount factor

using the data from a retail gasoline reward program.

46



Table 7: Summary of Moment Conditions Used to Identify Model Parameters

Parameter(s) Moment Conditions for Identification

α ln(P1(Mb)/P0(Mb))

β ln(P1(I + 1)/P0(I + 1))− ln(P1(I)/P0(I)),

and ln(P1(I + 2)/P0(I + 2))− ln(P1(I + 1)/P0(I + 1)), for I ∈ {3, · · · , b− 1}

ω1, ν ln(P1(0)/P0(0)) and ln(P1(1)/P0(1))

ω2 ln(P1(2)/P0(2))

ω3 ln(P1(b+ 2)/P0(b+ 2))
...

...

ωM ln(P1((M − 1)b+ 2)/P0((M − 1)b+ 2))

The parameters ν and ω1 are solutions to the moment equations relating choice-specific values to

choice probabilities at I = 0 and I = 1. Finally, higher values of ωB can be derived from the

moment conditions defining ln(P1((B − 1)b+ 2)/P0((B − 1)b+ 2)).

It is notable that in order to point identify β, we require two moment conditions - in other

words, the exclusion restriction needs to hold for at least 3 values of inventory. The fact that

a single exclusion restriction may not be sufficient for point identification of β has been shown

by Abbring and Daljord (2018). In particular, they show that Eq ((20)) can have multiple (but

finitely many) solutions for β. We provide an illustrative example of how in our application a

single exclusion restriction may not allow point identification, while two exclusion restrictions can,

in Figure 3. In the top panel, we plot the difference in value functions from the right hand side of

equation (20) as a function of β for I = 3. If the researcher observes that ∆v(4)−∆v(3) = −0.14,

there are two possible values of β that can fit this moment, at 0.79 and 0.95. In the bottom panel

of Figure 3, we plot the right hand side of equations (20) for two consecutive values of I, at 3 and

4. Now, if ∆v(4) − ∆v(3) = −0.14, and ∆v(5) − ∆v(4) = −0.10, there is only a single value of

β that can rationalize these two moments, at 0.79. We note that we do not need more than two

exclusion restrictions, as Eq ((27)) provides a formula for β based on two moments.

B Imputed Consumption Rates

In this section, we verify the realism of our assumptions that consumption rates are constant

within an individual, and can be calibrated by dividing total quantity purchased by total number
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Figure 3: Plots of the right hand side of equation (20), β(V (I+b)−V (I)−(V (I+b−1)−V (I−1)),

and possible solutions for β. Top panel: plot at I = 3, with two possible solution for β. Bottom

Panel, plots at I = 3 and I = 4, with only a single possible solution for β. Parameter values are

ν = 0.4, η = 1,M = 3,p = 3.31, b = 8 and logit error term.
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of weeks. Regarding the consumption rate calibration, one issue we were concerned about was

that since our sample period (both pre-estimation and estimation sample) spans 7 years, and

consumption rates might change over time due to external factors such as changes in household

composition. If such changes occur, in our estimation we would want to use a consumption rate that

reflected consumption in the estimation period, rather than the overall 7 year period. However, if

consumption rates do not change, it would be preferable to use the entire period since the estimated

consumption rate will be more precise. To address this potential issue, we perform the following

exercise:

1. Compute consumption rates using the entire sample period.

2. Compare average, within household inventory in the pre-estimation to the estimation period.

3. For households where the difference between pre-estimation and estimation period inventory

is more than 100 ounces (1 standard size bottle), use the consumption rate calculated from

the estimation period purchases only.

In our estimation sample, we use the post-estimation period to infer consumption rates for 71%

of the sample. We present the distribution of implied consumption rates and inventories for the

estimation sample in Table 8. In the empirical model, we estimate the consumption rate in terms

of the number of ounces a household would use per week. In the table, we present the consumption

rates in terms of the number of loads of laundry a household would do per week. To arrive at

this number, we use the rule that 100 ounces of laundry detergent converts to 32 loads of laundry.

The table suggests that households are doing 3 to 4 loads per week. Imputed inventory is also

measured in ounces. We divide this number by 100 to convert it into 100 ounce bottle equivalents,

and present the distribution of within household average inventory in the second row of the table.

Our estimated consumption rates suggest that individuals hold between 3 and 4 100 ounce bottles

at a time. Overall, the imputed consumption rates and inventory distributions seem reasonable.

We perform two additional exercises to assess the reasonableness of our imputed consumption

rates. First, we regress the consumption rates on household demographics that we might expect

to be correlated with them. The results of this regression are shown in Table 9. The two most

significant coefficients are household size of 4 people, and whether an individual has 2 dogs, both

of which should be correlated with higher consumption rates. The second exercise we perform is

to regress imputed inventory in week t − 1 on a dummy variable for purchase in week t. Table

10 shows the results of a spline regression of a dummy for purchase on different levels of imputed

inventory. When constructing the independent variables we classify an individual’s inventory into
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Table 8: Distribution of Consumption Rates And Inventories

Variable Min. 1st Qu. Median Mean 3rd Qu. Max.

Consumption Rates (Loads) 1.22 2.87 3.95 4.37 5.54 13.07

Imputed Inventory (100 Oz Bottles, overall) 0 1.5 3.1 3.97 5.78 14.98

Imputed Inventory (100 Oz Bottles, within household) 0.37 1.76 2.97 3.94 5.37 12.71

Notes: These statistics are constructed from the 312 households in the estimation data. The second row shows the

distribution across households of the average within-household imputed inventory during the estimation period.

three categories: above 0 and less than 50 ounces (low), between 50 and 100 ounces (medium), and

between 100 and 200 ounces (high). These cutoffs correspond to three popular bottle sizes in the

data. The excluded category is any inventory level above 200 ounces. An inventory level of 0 is

classified as a stockout. In Table 10, 0 < Inv ≤ 50, 50 < Inv ≤ 100 and 100 < Inv ≤ 200 are

dummy variables for each of these inventory levels, while 0 < Inv ≤ 50 × Inv, etc, are interactions

between the dummy variable and the inventory level. The coefficient estimates are consistent with

how individuals should behave if they stockpile and are forward-looking. In particular, purchase

probabilities are highest if a stockout occurs, and they decrease as inventory rises. Moreover, the

slope of the purchase probability with respect to the inventory level drops as inventory rises, which

we use to help verify rank condition R1.

C Extension to Inclusive Value Sufficiency

This section describes in detail how the extensions to Inclusive Value Sufficiency (IVS) first proposed

in Osborne (2018a) can be used to reduce the size of the price state space. Recall that we index

brands by k, package sizes by x, and the number of packages chosen by j. Under standard IVS,

where error terms are assumed to follow a logit distribution and brand level utilities do not scale

with the number of packages chosen, the inclusive value will be a function of both the package size

chosen, x, and the number of packages chosen, j:

Ωit(x, j) = ln

(∑
k

exp(ξixk − αipixktj)

)
.

The number of inclusive values one would have to track will be equal to XK. The idea behind

the extension to IVS is to essentially be able to factor j out of the inclusive value. To do this, two
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Table 9: Regression of Consumption Rate on Demographics

Regressor Estimate

HH Size 2 0.147*

HH Size 3 0.189**

HH Size 4 0.3478***

HH Size 5 0.1499

HH Size 6 0.266

Homeowner -0.0757

Child 12-17 0.1189

Children 0-5 and 6-11 -0.013

Children 6-11 and 12-17 -0.0584

Children 0-5, 6-11, and 12-17 0.3715

No Children -0.0917

Num of Dogs 1 0.0666

Num of Dogs 2 0.3195***

Num of Dogs 3 -0.3286

Num of Cats 1 0.0288

Num of Cats 2 0.0123

Num of Cats 3 -0.0061

Num of Cats 4 -0.0126

Num of Cats 5 0.1892

R Squared 0.22

Note: This regression is based on 312 observations.
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Table 10: Regression of Purchase Dummy on Inventory Level

Regressor Estimate

Intercept 0.0857***

Stockout 0.1338***

0 < Inv ≤ 50 0.1295***

0 < Inv ≤ 50 × Inv -0.1279**

50 < Inv ≤ 100 0.0801**

50 < Inv ≤ 100 × Inv -0.0516

100 < Inv ≤ 200 0.0751***

100 < Inv ≤ 200 × Inv -0.0362***

R Squared 0.0117

Notes: This regression is based on 35515 household-week observa-

tions. The inventory levels reflect inventories in the prior week, mea-

sured in hundreds of ounces.

assumptions are necessary. First, that brand level utility scales with j, and second, that the error

term follows a nested logit distribution where the outer nest corresponds to the choice of package

size and number of packages, and the inner nest corresponds to the brand choice. Regarding the

first assumption, we assume that the flow utility for choosing j packages of brand k can be written

as j
J ξixk, so that the inclusive value can be written as

Ωit(x, j) = ln

(∑
k

exp

(
j

J
[ξixk − αiJpixkt]

))
.

Formally, the second assumption means that the choice-specific error can be decomposed into two

errors as follows:

εijxkt = eijxt +
j

J
vikt,

where the distribution of vikt is Type 1 extreme value and the distribution of eijxt has a distribution

of the form denoted as C(λ) from Cardell (1997), where λ = j/J (note the C(λ) notation is

introduced in Cardell (1997) to refer to a particular distribution, and should not be confused with

our notation for the consumer’s choice set). It can be shown using derivations from McFadden

(1981) that if a choice-specific error follows an extreme value distribution with scale parameter λ

then the expected utility can be written as
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EU = λ ln

(∑
k

exp

(
j

J
[ξixk − αiJpixkt]/λ

))
.

Under the assumption that the choice-specific error across package sizes, number of packages and

brands follows a nested logit distribution, we need the λ parameter to be between 0 and 1, which

is why we assume that it is equal to j/J . As a result, the inclusive value can be written as

Ωit(x, j) =
j

J
ln

(∑
k

exp(ξixk − αiJpixkt)

)
.

Note that since j can be factored out of the inclusive value, it is not necessary to track a different

inclusive value for each j, and it is sufficient to write the inclusive value as Ωit(x).

D Model with Increasing Storage Costs

This section describes an extended version of the empirical model in the main text, where we allow

for storage costs to increase as the number of bottles held increases. As we discuss in the body of

the paper, there are three issues that arise when allowing for increasing storage costs in markets

where different package sizes of a product are available. Two of these are computational: it becomes

necessary to track the composition of inventory, which substantially increases the size of the model’s

state space, and if one wishes to use a flexible functional form to estimate the storage cost function,

the number of parameters one needs to include rises substantially. A third issue is conceptual: one

needs to make an assumption about the order in which consumption from inventory occurs. To

address the computational concerns, we simplify the state space by allowing individuals to only

hold up to 6 bottles, and by grouping the three medium sized bottles together, and we reduce

the number of parameters needed by assuming quadratic storage costs. To address the conceptual

concerns, we assume that the order of consumption in inventory is first-in-first-out (FIFO), meaning

that the order of consumption corresponds to the order of purchase. While it is difficult to verify

the validity of the FIFO assumption, Akça and Otter (2015) provide survey evidence for four

product categories (they do not include laundry detergent, but do include dishwashing detergent)

that individuals tend to only keep one package of a product open at a time.

Operationally, we assume that an individual can hold up to NB = 6 bottles, and keep track of

the size of bottle that is stored in slot o = 1, ..., NB. The FIFO assumption means that the bottle

in slot 1 is currently being consumed, and once it is finished, the bottle in slot 2 will be moved to

slot 1, the one in 3 will be moved to 2, and so on. In this version of the model we keep track of 2

inventory states, one continuous and one discrete. The continuous state is the amount of inventory
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left in bottle 1 in ounces, which we denote as I. The discrete state is the current configuration

of bottles, B = (b1, b2, ..., bNB
). We assume that storage the storage cost function is a quadratic

function of the total volume taken up by the current configuration of bottles B:

s(B;ωi) = ωi1

(
NB∑
o=1

V ol(bo)

)
+ ωi2

(
NB∑
o=1

V ol(bo)

)2

,

where V ol(bo) is the volume of the bottle in slot o. Even though the bottle composition state is

discrete, the number of states we have to track can get potentially very large in NB is big. For

example, if NB = 6, and the number of package sizes is 5, the total number of possible bottle

composition states is 19,531. We discretize the continuous part of the inventory state (the amount

left in the currently open bottle) into 17 points, and we also track 100 price states, which means for

each household we would have to track 33,202,700 states. It is clearly computationally infeasible

to include this many states per household. As a result, we make two simplifications. First, recall

that there are five package sizes individuals buy: 50 ounces, 80 ounces, 100 ounces, 128 ounces,

and 200 ounces. We group the 80, 100 and 128 ounce sizes together, meaning that we assume

that individuals treat these sizes as though they contain 100 ounces of detergent. One way to

interpret this assumption is that households perceive these sizes as allowing them to do the same

number of loads of laundry, which is probably not unrealistic: If one uses the rule that 100 ounces

produces 32 loads, then the 80 ounce bottle produces 26 loads, and the 128 ounce bottle produces

40. Since it takes households several weeks to use up a bottle of detergent, it is probably difficult

for households to predict exactly how long a bottle will last. Moreover, the volume taken up by all

these households will likely be similar.

Even if we assume that individuals only hold 3 package sizes, that leaves us with 781 discrete

states, which is still large. A second simplification we make is to reduce the set of admissable states

to those that are most frequently visited in the data. Note that under the assumption of constant

consumption rates which are estimated prior to estimating the structural model, we can calculate

the frequency at which different inventory states get visited. If a household makes a purchase that

would lead them to an inadmissable state, we assume that the particular purchase doesn’t change

the inventory state (the bottle purchased is immediately disposed of). The rule we use is to treat

the top 95% of visited states as admissable, which reduces the number of bottle states we need

to track down to 23. In practice, individuals typically only purchase one or two different package

sizes, and so inventory states which contain many different sizes do not get visited very often, if at

all. We also include a parameter which penalizes an individual who makes a choice that leads to

visiting an inadmissable state. This parameter helps us to fit choice probabilities, as without we
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would overpredict the probability of purchase for an individual who tries to visit such a state, since

they receive utility from the error draw, but are not penalized with higher storage costs. After

these restrictions, the number of states we have to track per household is 39,100. This is still four

times as many as our preferred specification, where we track 10,000 states per household.

One additional note on the state space of the extended model is that we include 17 continuous

inventory points, which correspond to possible volumes of detergent an individual could have for a

given size of an open bottle (0 to 200 ounces). As with the zero storage cost model, we split these

17 points into two evenly-spaced grids. The first 6 points correspond to the household having 0 to

5 loads left in a bottle (given our benchmark that 100 ounces is 32 loads), while the next 11 points

correspond to having 10 to 60 loads left and are evenly spaced by 5 loads (we treat the 200 ounce

bottle as actually having 187.5 ounces, or 60 loads, so that the size of the bottle corresponds to the

last point on the grid). We need less continuous inventory points for this model specification than

the one with zero storage costs, since levels of inventory higher than 200 ounces are captured by

the discrete bottle composition state, and only finitely many such configurations can occur.

Estimates of the model with increasing storage costs are shown in Table 11. The parameters

SC Linear and SC Quadratic measure the effect of increasing inventory by 100 ounces on utility.

The last parameter, Inadmissable State Penalty, is the disutility incurred if a consumer makes a

purchase that would lead to an inadmissable state.

E Steps for implementing the IJC algorithm

Before explain the estimation details, we introduce some additional notation. Denote the vector

of population-varying parameters drawn in step 1 as θi1, and the population-fixed parameters

in step 2 as θ2. We assume that the individual- specific parameters are derived from a normal

distribution with mean b′Zi and variance W , where Zi is a matrix of demographic characteristics

for household i. In the model presented in the main body of the paper, Zi is a column vector

of 1. We include additional demographics as a robustness check in the model presented in Online

Appendix J. Since some of the parameters must be bounded (such as the discount factor or price

coefficient) we assume that they are transformations of underlying normal parameters. We assume

that the price coefficient, the stockout cost are lognormal. The transformation applied to produce

the discount factor is exp(x)/(1+exp(x)), where x is normal. The inventory bound transformation

is M ∗ exp(x)/(1 + exp(x)), where the maximum inventory bound M is set to be equivalent to

holding 24 of the largest package size of detergent (in terms of volume, this is 4800 liquid ounces of

detergent). We will denote the untransformed parameters as θ̃i1, and the transformed parameters
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Table 11: Dynamic Parameter Estimates: Increasing Storage Costs

Parameter 1st Tertile Median Mean 2nd Tertile

Price Coefficient -0.2455 -0.1873 -0.4152 -0.1435

[-0.2608, -0.2297] [-0.2003, -0.1755] [-0.5432, -0.3522] [-0.1547, -0.1325]

Stockout Cost 0.0381 0.0726 0.2362 0.132

[0.0235, 0.0512] [0.0505, 0.0934] [0.1964, 0.2735] [0.1037, 0.1606]

Discount Factor 0 0.9613 0.5515 1

[0, 1e-04] [0.4529, 1] [0.499, 0.5986] [1, 1]

Fixed Cost of Purchase - - -1.7455 -

[-1.8525, -1.6403]

SC Linear 0 0 0.0243 1e-04

[0, 0] [0, 1e-04] [0.0079, 0.0466] [0, 6e-04]

SC Quadratic 3e-04 0.0017 0.0776 0.0095

[1e-04, 6e-04] [8e-04, 0.0033] [0.0604, 0.0949] [0.0051, 0.017]

Inadmissable State Penalty - - -1.589 -

[-1.8008, -1.3389]

Log-likelihood -20840.518

Notes: This table shows average moments of the posterior distribution of the population distribution of the

dynamic parameters. Only the mean is shown for parameters that are fixed across the population. For

example, the median columns shows the average of the population median of a given parameter, where the

average is taken across MCMC draws. Square brackets show 95% confidence intervals.

as θi1 = T (θ̃i1). Note that we assume that θ̃i1 ∼ N(b′Zi,W ).

E.1 Steps 1 to 4: Drawing the model parameters

We use the random walk Metropolis-Hastings Algorithm to implement Step 1 of the Gibbs sampler,

and draw the individual specific parameters on a household-by-household basis. To that end we

describe how we draw an individual θi1. Suppose that we are at step g of the Gibbs sampler.

First, conditional on the last step’s draw of θ̃i1, which we call θ̃
0
i1, we draw a candidate θ̃

1
i1 from

N(θ̃
0
i1, ρ1W g−1), where W g−1 is last iteration’s estimate of the variance matrix. Our new utility

parameters will be θ1
i1 = T (θ̃

1
i1). We then compute the joint likelihood of brand and size purchase

at the old draw and the candidate draw. To implement this we first need an estimate of each

consumer’s value function. As we describe further in Section E.2, we compute this estimate by

averaging over past value functions, using the a kernel-weighted average where the weights depend
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on how close the current draw is to past draws. The choice probability can be written as the

probability of the observed brand choice (kit) given package size choice (xit) and number of bottles

(jit), multiplied by the probability of the observed size choice. For a given individual the probability

of a particular brand choice given their choice of size is

Pr(kit|xit, pit;θi1,θ2) =
exp (ξxit,kit − Jαpi,xit,kit,t)∑
l∈C2(xit)

exp (ξxit,l − Jαpi,xit,l,t)
.27 (35)

The probability of a particular size choice can be written independently from the brand choice as

Pr(xit, jit|Ωit;θi1,θ2) =
exp

(
jit
J Ωit(xit) + ũ(Iit, jit, xit;θi1,θ2) + βÊV i(Ii,t+1,Ωit;θi1,θ2))

)
∑

(j,x)∈C exp
(
jit
J Ωit(x, j) + ũ(Iit, j, x;θi1,θ2) + βÊV i(Ii,t+1,Ωit;θi1,θ2)

) ,
(36)

where ÊV (Ii,t+1,Ωit;θi1,θ2) is the estimated expected value function, and

ũ(Iit, jit, xit;θi1,θ2) = −νi
ci − (Iit + xitjit)

ci
1{Iit < ci}.28

Note that to compute this probability we need to compute the inclusive values Ωit, which themselves

are functions of θi1 and θ2 parameter draws. To construct the estimated value function we will

also need to compute the transition process for the inclusive values. We discuss how the inclusive

values and their transition process are computed in Section E.3.

The likelihood used for the Metropolis-Hastings accept-reject step will be

Li(θi1,θ2) =

Ti∏
t=1

Pr(kit|xit, jit, pit;θi1,θ2)Pr(xit, jit|Ωit(1);θi1,θ2).

The candidate draw will be accepted with probability

L(θ1
i1,θ2)

L(θ0
i1,θ2)

k(θ̃
0
i1)

k(θ̃
1
i1)
,

where k denotes the prior density on θi1. Under our assumption of normality of the parameters

this prior is simply the multivariate normal with mean bg−1 and variance W g−1.

After drawing the population-varying parameters we draw the mean (b) and variance (W )

parameters that generate them (Steps 2 and 3). Conditional on the θi1 draws and the demographics

27Note that the number of bottles purchased, jit, drops out of this choice probability due to the distributional

assumptions made on the error term.

28The stockout cost enters utility slightly differently in the empirical model, to capture the idea that if a small

amount of detergent is left in the bottle the consumer may use a bit of it to do laundry.
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Zi, the b parameters are drawn using standard Bayesian regression. We put a relatively diffuse

prior on the b, using a normal distribution with mean zero and variance matrix of 1000I.29. We

also assume a relatively diffuse prior on W . If the dimensionality of θi1,g is K, then the prior

variance matrix is set to I ∗ (K + 3) ∗ 0.01.30 Given this prior, a posterior draw on the variance

matrix can be computed given b, θi1,g and Zi from an inverse Wishart distribution.31

The fourth step is to draw the population-fixed parameters θ2. This step proceeds in largely

the same way as the first step. A candidate draw θ1
2 is taken from N(θ0

2, ρ2W 2), and is accepted

with probability

∏I
i=1 Li(θi1,θ

1
2)∏I

i=1 Li(θi1,θ
0
2)

k(θ0
2)

k(θ1
2)
.

We set the prior on θ2 to be noninformative.

E.2 Step 5: Updating the value function

After a new vector of parameters are drawn, the value functions are updated at the current param-

eter draw. There are two steps necessary in updating the value function. First, we construct an

estimate of the value function at the current parameter draw. Second, we perform a single update

to the value function.

We first describe how the estimated value function is constructed. The estimated value function

is constructed by integrating over the transition density of inclusive values, and by averaging over

past value functions. Importantly, when we average over past value functions, we put more weight

on value functions which were computed at parameter draws close to the current draw. For each

individual in the data, we store the value function on a grid of 100 inventory points and 100 random

price draws (meaning we update the value function for each consumer on a grid of 10,000 points).

Index the inventory grid points using s1 and the price grid points using s2. The random prices are

drawn from the empirical distribution of prices, which we denote as h(·). Since we assume that

29The dimension of I corresponds to vec(b)

30Our choice of prior variance matrix was informed by artificial data experiments, where we generated data from

the myopic inventory model with heterogeneous coefficients, and recovered the parameter distributions. We found

that when prior variances were too wide the estimator had some difficulty recovering small variance parameters, but

scaling down the prior by a factor of about 0.01 mitigated this problem, while still allowing us to recover larger

variance parameters.

31For more details on the process using to generate the hyperparameters we refer the readers to Rossi, Allenby,

and McCulloch (2005). Our code for drawing these parameters is heavily based on the C++ code provided with the

book.
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the value functions are functions of inclusive values, rather than prices, the first thing we do is to

compute the inclusive value at each price grid draw which arises at the current parameter draw.

We denote this inclusive value as Ωs2 .32 Once the inclusive values are computed, we compute a set

of importance weights, wns(Ωs2), which are used when integrating out the transition probabilities

in the value function:

wns(Ωs2) =
F (Ωns |Ωs2 ;θi1,θ2)

h(Ωns)
,

where F (Ωt|Ωt−1;θi1,θ2) is the transition density of the inclusive values at the current parameter

draw.

The second element is to average over past value functions. For the past g = 1, ..., G Gibbs draws

we have V̂i at each of the inventory states s1 and the past importance draws on the inclusive values

s2. Denote the saved value functions and parameter draws respectively as V̂ g
i ,θ

g
i1,θ

g
2, g = 1, ..., G.

We compute kernel weights φg(θi1,θ2) = φ([θi1,θ2]− [θgi1,θ
g
2]) where φ(·) is a multivariate normal

kernel function. Our value function estimate is then

Ṽi(Is1 ,Ωs2 ;θi1,θ2) =

G∑
g=1

Ns∑
ns=1

V̂ g(Is1 ,Ωns ;θ
g
i1,θ

g
2)φg(θi1,θ2)wns(Ωs2)∑G

g=1

∑Ns
ns=1 φg(θi1,θ2)wns(Ωs2)

.

When we update the value function, we may need to compute the expected value function

at inventory points that are not on the grid. To do this we interpolate the Ṽi(Is1 ,Ωs2 ;θi1,θ2)

over inventory states using linear interpolation. Then the expected value function estimate at any

inventory point I is

ÊV i(I,Ωs2 ;θi1,θ2) = Ṽi(I
′
s1 ,Ωs2 ;θi1,θ2) +

I − I ′s1
I
′
s1 − I

′
s1

Ṽi(I
′
s1 ,Ωs2 ;θi1,θ2),

where I ′s1 is the largest inventory grid point that is smaller than I and I
′
s1 is the smallest grid

point that is larger than I. We will use ÊV i(I,Ωs2 ;θi1,θ2) when updating the value function, as

we describe in the next paragraph. Before moving on, we also note that when we compute choice

probabilities in Section E.1 we also need to compute the expected value function; for this we use

a similar procedure to the above (the main difference is that the value function approximation is

evaluated at an inclusive value derived from an observed price, rather than a particular inclusive

value grid point).

32An alternative approach we experimented with was to propose an importance distribution for inclusive values

and to draw inclusive values from that. We found that this approach would sometimes lead to numerical errors when

computing transition probabilities, if the current parameter draw was very far from all of the drawn inclusive values.

(maybe move this down)
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Denote this value function estimate as ÊV i(I,Ω;θi1,θ2). We will index inventory grid points

(which are fixed across Gibbs iterations) with s1 and inclusive value grid points (which are random)

with s2. Then at a particular grid point s1, s2, with state variables Is1 ,Ωs2 , the updated value

function is

V̂i(Is1 ,Ωs2 ;θi1;θ2) =
∑

(j,x)∈C

log
(

exp
(

Ω̂s2(x, j) + ũ(Is1 , j, x;θi1;θ2) + βÊV i(I
′
s1 ,Ωs1 ;θi1,θ2)

))
.

(37)

E.3 Inclusive value transition process

When we take a new draw on the parameters θi1 and θ2 we need to compute new inclusive values,

as well as to estimate their transition processes, and the functions for approximating the inclusive

values for j > 1. Our approach builds on Hendel and Nevo (2006a) in two ways. First, we

estimate the except we estimate the inclusive value transition process at the individual rather

than population level. Second, rather than using a linear AR1 specification for the inclusive value

transition process, we use a more flexible spline process which we believe should fit the transition

process of prices better. In particular, if a particularly low price is observed the transition process

is probably different than a high price.

The spline basis functions we use are the B-spline basis functions proposed in (?). The procedure

we use works as follows: first, for every individual i, week t and package size k we compute inclusive

values, which we denote as Ωk,it. Then for each individual and package size we calculate the

maximum and minimum values of the inclusive values, and decide on how many knot points will

be included. We choose to use n = 1 knots, which means that the transition process will depend

on whether the inclusive value is below the midpoint, or above it. This approach seems reasonable

since the price process of laundry detergents seems to follow a hi-lo process, with price being at

a regular retail price for some time and periodically dipping to a very low value. Given n knot

points, the procedure produces n+ 2 basis functions. We denote the basis function l for individual

i, and package k as φk,l,i(·). Then the regression equation that

Ωk,it =

K∑
j=1

n+2∑
l=1

κk,l,iφk,l,i(Ωj,it−1) + εit,

where for each size j 6= k we must normalize one κk,l,i to 0. This normalization is necessary because

the sum of the basis functions for a given size equals n+2 by construction. We choose to normalize

the coefficient for basis function n + 2. We note that we do not need to normalize any parameter

for size k, since we do not include a constant in the regression.
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When implementing this procedure, we found that for a few individuals and package sizes

the basis functions would become close to collinear if that individual observed very little price

variation for that size, or if the likelihood was being evaluated at a particularly extreme draw

of the parameters, which would lead to numerical instability in the code which would solve for

the regression parameters. To avoid this problem, after constructing the matrix of independent

variables during estimation we compute the condition number of the X ′X matrix, and if the X ′X

matrix has a condition number above 1 × 1012 we run an AR1 regression instead of the spline

regression above.

E.4 Setup of the Gibbs Sampler

In this section we describe some details of the setup of the Gibbs sampler. The computer code we

use is written in R and C++ and designed to take advantage of parallel processing in the value

function averaging and updating. Our code for Bayesian estimation makes use of routines from

Rossi, Allenby, and McCulloch (2005) for summarizing the model output as well as for drawing the

heirarchical parameters. For the Metropolis-Hastings steps in steps 1 and 4 of the Gibbs sampler

we need to set the parameters ρ1 and ρ2, which control the variance of the random walk process for

the population-varying and population-fixed parameters, respectively. Each of these parameters

are tuned so that the acceptance rate over the course of the sampler is about 30%. We tune the

parameter ρ1 every iteration: if the fraction of household level parameters that are accepted is above

30%, we increase ρ1 by 10%; otherwise we decrease it by 10%. For ρ2, we adjust the parameter

every 25 iterations: if the number of acceptances for the past 25 iterations is above 30%, then the

ρ2 parameter is decreased by 25%; otherwise it is increasd by 25%. The ρ parameters move some

initially but settle down after about 500 iterations.

To compute theW 2 matrix, we estimate the dynamic stockpiling model assuming no unobserved

parameter heterogeneity using MCMC (there is still heterogeneity in consumer price expectations

and consumption rates). Then, we compute the inverse information matrix of the likelihood function

evaluated at these initial estimates. We set W 2 to be the submatrix of the inverse information

matrix corresponding to the parameters which are set to be fixed across the population. We found

this procedure for setting W 2 worked well in artificial data experiments.

For the value function approximation we choose G = 10, and we use a diagonal bandwidth

matrix with bandwidth parameter set to (4/(3G))0.2. We found these values worked well in artificial

data experiments where we tested out the sampler. As we discussed above we evaluate the value

function on 100 grid points. Grid points for inventory are chosen between 0 and the maximum

inventory value of 4800 ounces, with the first 20 points of the points being clustered equally between
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0 and 70 ounces (around the size of a smaller package of detergent) and the rest between 700 and

4800. We choose more points near zero since the incentive to purchase in advance of running

out becomes more important for low inventory levels, and we want to make sure we capture that

behavior well.33 We run the Gibbs sampler for 20,000 iterations. The draws appear to converge at

about 4,000 iterations, so we drop the first 4,000 draws to reduce burn-in.

F Model Fits

In this section we compare how the main empirical model specification, where discount factors

are free, fits some selected moments of the data relative to the model specification that fixes the

discount factor to the rational expectations benchmark. We emphasize that overall, the model with

free discount factors provides a significantly better fit to overall purchases, which is a result of it

providing a higher log-likelihood and lower Deviance Information Criterion. In Table 12, we com-

pare summary statistics related to purchase timing, such as the overall purchase probability and

the number of weeks between purchases. The first row shows the overall purchase probability - the

first column is estimated from the data and the second and third show the simulated probabilities

from the model. The models underestimate the purchase probability by a small amount, but the

model with flexible discount factor fits the data a bit better than the rational expectations model.

The next rows show the summary statistics of interpurchase timing, measured in weeks. Overall,

the structural model seems to mimic the percentiles of the empirical distribution of interpurchase

timing, but systematically overpredicts the time between purchases by about 1 to 2 weeks. Gen-

erally, the model with the free discount factor is a little bit closer to the data. In Table 13, we

show the actual and predicted purchase shares for all products available in the data. The predicted

shares are close to the truth, typically within 1% or less.

We examine how imputed inventory varies with actual and predicted purchase probabilities in

Table 14. The first column shows the empirical purchase probability given a particular range of

imputed inventory. We present imputed inventory in terms of hundreds of ounces, or, equivalently,

the number of one hundred ounce bottles held. As one would expect, the empirical probabilities

drop as inventory rises, consistent with stockpiling behavior. In the second and third columns, we

show the average of the predicted purchase probabilities for the same observations use to construct

the estimates in the data column. The purchase probabilities are constructed for each individual

using the average of their posterior draws. The main model specification replicates this trend,

33Equivalently, most of the nonlinearity in the value function occurs for low inventory levels, so having more

interpolation points in that region of the state space ensures our approximation to the value function is good.
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Table 12: Fit: Summary Statistics Related to Purchase Timing

Moment Data Main Model Rational Expectations

Overall Purchase Prob. 10.17 8.74 8.67

Interpurchase 25th Percentile 4 4 4.01

Interpurchase 50th Percentile 7 8.42 8.68

Interpurchase Mean 9.89 11.59 11.68

Interpurchase 75th Percentile 13 15.4 15.6

Interpurchase Standard Dev. 8.06 10.97 10.93

Notes: In the data column, purchase prob measures the overall empirical probability

of a purchase in the estimation data. The interpurchase rows refer to the percentiles,

mean and standard deviation of the number of weeks between purchases in the empirical

data. In the second and third columns, we simulate the corresponding moments out of

each model. The simulation is done for every MCMC draw and simulated choices are

saved for every 10th draw to save hard drive space. The predicted summary statistics

are computed for choices that are saved and averaged across draws.

although it underpredicts the purchase probability at low levels of inventory somewhat. The model

specification that corresponds to the rational expectations benchmark displays a somewhat different

trend. It predicts higher purchase probabilities at low levels of inventory, which is more consistent

with the data, but also overpredicts purchase at higher levels of inventory, which is inconsistent with

the data. What is likely happening here is that if one assumes rational expectations, consumers

will feel stronger incentives to hold higher levels of inventory and make purchases, even if they are

already carrying a lot of a product.

Our counterfactual exercise suggests that the rational expectations model overpredicts how

individuals respond to drops in price, because more forward-looking individuals have stronger

incentives to time their purchases to occur during discounts. We present evidence in support of this

intuition in a series of regressions shown in Table 15. In these regressions, we regress a measure of the

inclusive value for the most popular 100 ounce size on a purchase dummy variable (first column),

and the predicted likelihood of purchase on this inclusive value. The inclusive value we use is

constructed from the estimates of a homogeneous parameters version of the model, which we use as

starting points for both our estimation specifications (we construct the inclusive value in this way

because we wanted to use an estimate that was independent of either of the model specifications).

The purchase likelihood is the predicted likelihood of a purchase at each observation in the data,

and is again constructed for each individual using the average of the individual’s posterior draws.

As expected, a higher inclusive value is correlated with an increased likelihood of purchase. The
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Table 13: Fit: Product-Level Shares

Moment Data Main Model Rational Expectations

Tide, 100 OZ 19.09 16.96 17.65

Tide, 200 OZ 5.19 6.21 5.89

Tide, 50 OZ 2.25 3.09 3.23

Tide, 80 OZ 0.08 0.14 0.17

Xtra, 128 OZ 9.44 9.34 9.26

Xtra, 200 OZ 0.8 1.3 1.27

Purex, 100 OZ 7.87 7.53 7.45

Purex, 128 OZ 0.03 0.1 0.1

Purex, 200 OZ 0.82 0.79 0.7

Purex, 50 OZ 0.11 0.25 0.2

All, 100 OZ 8.5 6.45 6.29

All, 200 OZ 0.47 0.68 0.63

All, 50 OZ 0.22 0.99 0.92

All, 80 OZ 0.03 0.08 0.07

Arm & Hammer, 100 OZ 7.24 6.64 6.61

Arm & Hammer, 200 OZ 0.69 0.65 0.61

Era, 100 OZ 5.32 4.67 4.71

Era, 200 OZ 0.71 0.27 0.23

Era, 50 OZ 0.14 0.34 0.34

Dynamo, 100 OZ 6.45 6.49 6.54

Dynamo, 200 OZ 0.14 1.16 1.16

Wisk, 100 OZ 11.63 8.14 8.01

Wisk, 200 OZ 0.03 0.45 0.44

Wisk, 80 OZ 0.14 0.6 0.6

Private Label, 100 OZ 1.51 2.09 2.19

Private Label, 128 OZ 2.77 2.81 2.84

Private Label, 50 OZ 0.03 0.11 0.1

Cheer, 80 OZ 2.41 3.31 3.44

Fab, 100 OZ 0.52 0.95 0.9

Fab, 50 OZ 0.6 0.2 0.19

Yes, 100 OZ 1.29 1.25 1.3

Ajax Fresh, 128 OZ 0.47 0.69 0.67

Gain, 100 OZ 0.63 0.69 0.71

Gain, 200 OZ 0 0.01 0.01

Ajax, 128 OZ 0.47 1.7 1.7

Trend, 128 OZ 0.47 0.96 0.99

Sun, 100 OZ 0.47 0.48 0.49

Solo, 100 OZ 0.63 0.83 0.8

Ivory Snow, 50 OZ 0.36 0.59 0.6

Notes: In the data column, we show the overall purchase share of each product available,

given a purchase occurs. In the second and third columns, we simulate the corresponding

moments out of each model. The simulation is done for every MCMC draw and simulated

choices are saved for every 10th draw to save hard drive space. The predicted summary

statistics are computed for choices that are saved and averaged across draws.
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Table 14: Fit: Purchase Probabilities for Different Levels of Imputed Inventory

Number of 100 ounce Data Main Model Rational

Bottle Equivalent Expectations

0-1 16.41 11.49 13.15

1-2 10.59 7.75 8.58

2-3 8.31 7.63 8.38

3-4 9.32 8.15 9.33

4-5 8.54 8.65 10.22

5-6 8.46 8.91 10.17

6+ 8.42 8.91 10.03

Notes: In the data column, purchase prob measures the overall empirical probability of

a purchase in the estimation data for a given level of imputed inventory (in hundreds of

ounces). In the second and third columns, we show the average predicted purchase like-

lihoods, at the average of the individual-level draws, for each level of imputed inventory

in the data.

Table 15: Fit: Regression of Purchase Indicator/Likelihood on Inclusive Value

Coefficient Data Main Model Rational

Expectations

Intercept 0.2098 0.1953 0.2428

(0.01387) (0.00211) (0.00277)

Inclusive Value 0.0185 0.0183 0.0245

(0.00236) (0.00036) (0.00047)

Notes: In the data column, we present a regression of a purchase dummy variable on the

estimated inclusive value . In the second and third columns, we show the predicted pur-

chase likelihoods, at the average of the individual-level draws, for each level of imputed

inventory in the data.

main model specification with the free discount factor has a correlation that is very similar in

magnitude. However, the correlation between the inclusive value and the purchase likelihood in the

rational expectations model is much larger. The fact that this model overstates price sensitivity

is consistent with the overprediction of quantity increase due to increased promotion depth in our

counterfactual exercise.
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G Artificial Data Experiment: Empirical Model

In this section we will provide additional support in our data that we can identify the model

parameters, including the discount factor, and heterogeneity in the discount factor. We will do

this by simulating consumer choices from the model, and running the MCMC sampler to recover

the parameters. Our procedure for generating the parameters for our simulation is to compute

the average mean and variance matrix over saved draws of the individual-specific parameters,

without any transformations applied, and then to draw individual-specific parameters from a normal

distribution with the estimated mean and variance. We then apply parameter transformations (i.e.,

on the discount factor or price coefficient), to produce the individual-specific parameters. We then

solve for every individual’s value function, and simulate individual choices. Choices are simulated

for both the pre-estimation sample (assuming zero inventory at the beginning of the individual’s

time series), and the estimation sample, for all individuals. The MCMC sampler is then run on the

simulated data in exactly the same way as it is run on the estimation data.

The estimation results for the dynamic parameters are shown in Table 16. The first column

shows the average of the population distribution of individual-level parameters, along with confi-

dence bounds in brackets, while the column beside it shows the true mean of the individual-level

parameters. The estimated model parameters are very close to the truth, and the truth is within

the confidence bounds of the estimates. The next two columns show the estimated population stan-

dard deviations, along with the actual standard deviations. Again, the true values are within the

confidence bounds of the estimates. We find similar results for the estimates of the product-specific

parameters, and their heterogeneity, shown in Online Appendix Tables 17 and 18.
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Table 16: Dynamic Parameter Estimates: Artificial Data Experiment

Estimated Mean True Mean Estimated True

Parameter Standard Deviation Standard Deviation

Price Coefficient -0.27 -0.27 0.11 0.1

[-0.28, -0.26] [0.1, 0.14]

Stockout Cost 0.42 0.42 0.19 0.16

[0.36, 0.48] [0.14, 0.27]

Discount Factor 0.85 0.88 0.11 0.16

[0.81, 0.91] [0.05, 0.16]

Fixed Cost of Purchase -1.82 -1.83 - -

[-1.91, -1.74]

Notes: This table shows average moments of the posterior distribution of the population distribution of the

dynamic parameters (columns 1 and 3) compared to the true moments of the individual-level parameters

used to construct the simulated data. Only the mean is shown for parameters that are fixed across the

population. Square brackets show 95% confidence intervals.
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Table 17: Product Parameter Estimates: Artificial Data Experiment (1)

Estimated Mean True Mean Estimated True

Parameter Standard Deviation Standard Deviation

Tide, 200 OZ -2.05 -2.24 - -

[-2.61, -1.48]

Xtra -13.4 -13.48 4.58 4.52

[-14.11, -12.73] [4, 5.16]

Xtra, 200 OZ -12.52 -13.53 - -

[-13.11, -11.86]

Purex -5.55 -5.68 2.69 2.57

[-5.88, -5.26] [2.38, 3.03]

Purex, 128 OZ -19.79 -18.27 - -

[-22.97, -17.45]

All -4.65 -4.86 3.19 2.99

[-5.03, -4.35] [2.85, 3.61]

Arm & Hammer -5.24 -5.21 2.78 2.49

[-5.54, -4.97] [2.47, 3.14]

Era -6.95 -6.88 3.1 2.89

[-7.57, -6.39] [2.63, 3.64]

Dynamo -6.78 -6.54 3.67 3.38

[-7.29, -6.29] [3.23, 4.18]

Wisk -4.14 -4.22 3.24 3.05

[-4.69, -3.67] [2.83, 3.86]

Private Label -12.01 -11.49 4.19 3.88

[-12.82, -11.1] [3.42, 4.81]

Cheer -13.37 -13.59 - -

[-14.26, -12.54]

Fab -8.95 -9.04 3.68 4.63

[-9.58, -8.26] [3.13, 4.43]

Notes: This table shows average moments of the posterior distribution of the population distribution of the

dynamic parameters. For example, the median columns shows the average of the population median of a

given parameter, where the average is taken across MCMC draws. Only the mean is shown for parameters

that are fixed across the population. Square brackets show 95% confidence intervals.
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Table 18: Product Parameter Estimates: Artificial Data Experiment (2)

Estimated Mean True Mean Estimated True

Parameter Standard Deviation Standard Deviation

Yes -8.2 -7.23 3.85 2.91

[-8.94, -7.46] [3.17, 4.56]

Ajax Fresh -16.99 -16.4 1.88 4.3

[-18.57, -15.71] [1.2, 2.44]

Gain -5.47 -5.42 - -

[-5.87, -5.06]

Ajax -13.93 -14.02 - -

[-14.62, -13.16]

Trend -13.77 -14.03 - -

[-14.52, -12.96]

Sun -6.54 -6.77 - -

[-7.02, -6.11]

Solo -7.94 -7.6 - -

[-8.37, -7.5]

Ivory Snow -14.78 -14.73 - -

[-15.69, -13.87]

128 OZ -4.2 -4.05 - -

[-4.91, -3.46]

200 OZ -5.24 -5.7 - -

[-5.85, -4.66]

50 OZ -12.97 -12.86 - -

[-13.72, -12.23]

80 OZ -14.39 -15.42 - -

[-15.42, -13.36]

Notes: This table shows average moments of the posterior distribution of the population distribution of the

dynamic parameters. For example, the median columns shows the average of the population median of a

given parameter, where the average is taken across MCMC draws. Only the mean is shown for parameters

that are fixed across the population. Square brackets show 95% confidence intervals.
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H Supplementary Tables and Figures

Figure 4: Price (in dollars) of 200 OZ Tide at a Representative Store
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Table 19: Average Percent Price Reduction, Percent of Deals for Available Brand-Sizes

Brand 100 oz 128 oz 200 oz 50 oz 80 oz

Tide 20, 34 - 18, 33 15, 9 9, 2

Xtra - 18, 24 18, 15 - -

Purex 30, 33 16, 27 27, 9 30, 21 -

All 22, 33 - 15, 14 18, 10 27, 18

Arm & Hammer 26, 26 39, 14 30, 10 6, 18 -

Era 22, 21 - 23, 18 45, 2 -

Dynamo 30, 27 - 31, 17 20, 27 -

Wisk 21, 33 - 16, 16 23, 23 28, 42

Private Label 20, 22 12, 11 10, 12 33, 10 -

Cheer 16, 12 - - 42, 1 21, 16

Fab 33, 18 - - 33, 31 -

Yes 38, 20 - - 3, 31 -

Ajax Fresh - 23, 16 - - -

Gain 28, 19 - 28, 40 - -

Ajax 6, 36 24, 20 - - -

Trend - - - - -

Sun - - - - -

Solo 23, 61 25, 6 4, 32 - -

Ivory Snow 4, 64 - - - -

Notes: The left number is the average percent difference between the discounted price and the

non-discounted price in a store, while the right shows the percentage of store-week observations

where a discount occurs. The numbers in this table are constructed from IRI’s store panel data.

The number of observations is 25550 store-week-product combinations.

71



Table 20: Brand Parameter Estimates (1)

Parameter 1st Tertile Median Mean 2nd Tertile

Tide, 200 OZ - - -2.24 -

[-2.8, -1.66]

Xtra -15.99 -13.35 -13.31 -10.86

[-17.53, -14.75] [-14.4, -12.42] [-14.37, -12.4] [-11.66, -10.07]

Xtra, 200 OZ - - -13.53 -

[-14.37, -12.7]

Purex -6.94 -5.35 -5.51 -3.96

[-7.71, -6.2] [-5.87, -4.79] [-6.1, -4.96] [-4.39, -3.53]

Purex, 128 OZ - - -18.27 -

[-21.28, -15.88]

All -6.46 -4.69 -4.87 -3.13

[-7.34, -5.73] [-5.28, -4.14] [-5.47, -4.38] [-3.6, -2.67]

Arm & Hammer -6.48 -4.99 -5.11 -3.69

[-7.28, -5.89] [-5.57, -4.56] [-5.74, -4.7] [-4.14, -3.3]

Era -8.51 -6.69 -6.7 -4.96

[-9.43, -7.74] [-7.4, -6.08] [-7.38, -6.17] [-5.55, -4.43]

Dynamo -8.24 -6.18 -6.34 -4.35

[-9.09, -7.44] [-6.8, -5.53] [-6.9, -5.82] [-4.82, -3.9]

Wisk -6.04 -4.31 -4.36 -2.7

[-7.27, -5.16] [-5.21, -3.68] [-5.2, -3.75] [-3.28, -2.22]

Private Label -13.83 -11.42 -11.42 -9.14

[-16.51, -12.23] [-13.43, -10.15] [-13.51, -10.22] [-10.55, -8.15]

Cheer - - -13.59 -

[-14.52, -12.65]

Fab -11.23 -8.41 -8.85 -6.04

[-12.86, -9.79] [-9.65, -7.34] [-10.09, -7.87] [-7.02, -5.11]

Notes: The first column of the table show the average of the estimated posterior distribution of the brand

parameters. Only the mean is shown for parameters that are fixed across the population. The second shows

the 95% confidence bound around the mean. Brand coefficients for Tide (the most popular product) are

normalized to be zero across the population.
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Table 21: Brand Parameter Estimates (2)

Parameter 1st Tertile Median Mean 2nd Tertile

Yes -8.8 -6.97 -7.09 -5.29

[-9.67, -8.12] [-7.54, -6.47] [-7.64, -6.66] [-5.74, -4.8]

Ajax Fresh -18.77 -16.05 -16.2 -13.68

[-20.43, -17.07] [-17.1, -14.86] [-17.27, -15] [-14.5, -12.83]

Gain - - -5.42 -

[-5.89, -5.01]

Ajax - - -14.02 -

[-14.93, -13.2]

Trend - - -14.03 -

[-15.02, -13.12]

Sun - - -6.77 -

[-7.42, -6.18]

Solo - - -7.6 -

[-8.08, -7.11]

Ivory Snow - - -14.73 -

[-15.82, -13.78]

128 OZ - - -4.05 -

[-4.83, -3.15]

200 OZ - - -5.7 -

[-6.32, -5.08]

50 OZ - - -12.86 -

[-13.69, -11.99]

80 OZ - - -15.42 -

[-16.7, -14.26]

Notes: The first column of the table show the average of the estimated posterior distribution of the brand

parameters. Only the mean is shown for parameters that are fixed across the population. The second shows

the 95% confidence bound around the mean. Brand coefficients for Tide (the most popular product) are

normalized to be zero across the population.
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I Supplementary Identification Figures
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Figure 5: Expected future payoff from purchase, β [V (I ′1(I))− V (I ′0(I))] (left panel), and purchase

probability (right panel), as a function of I and β, for storage costs estimated in Online Appendix

J, Table 11 from the model in Online Appendix D. Parameter values ν = 0.4, M = 3, p = 3.31,

and logit error term.
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Figure 6: Expected future payoff from purchase, β [V (I ′1(I))− V (I ′0(I))] (left panel), and purchase

probability (right panel), as a function of I and β, for storage costs ten times those in Figure 5.

Parameter values ν = 0.4, M = 3, p = 3.31, and logit error term.

To construct Figure 9, we first compute for every individual in the data their value function
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Figure 7: Expected future payoff from purchase, β [V (I ′1(I))− V (I ′0(I))], as a function of I and β,

for different weights on the error term (we multiply the logit error by a parameter η). Parameter

values ν = 0.33, ω1 = ω2 = ω3 = 0, M = 3, p = 1.77, and logit error term.

and choice probabilities at the average of their individual-specific parameter draws, for each inven-

tory and price state. Then, we compute the average expected future payoff by averaging across

individuals and price states at each inventory state point. When we average across price states,

we weight each point by the empirical probability of that price occurring in the household pur-

chase data. When computing the expected future value of purchase at next week’s inventory given

today’s inventory, we compute the value function at the expected level of inventory an individual

would have tomorrow, if they purchased today. To compute this average we use the individual’s

probabilities of choosing each size and number of bottles given the individual’s parameters and the

price state.
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Figure 8: Theoretical probability of purchase for a given level of inventory at the beginning of

a period, for different weights on the error term (we multiply the logit error by a parameter η).

Parameter values ν = 0.33, ω1 = ω2 = ω3 = 0, M = 3, p = 1.77, and logit error term.
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Figure 9: Average Expected Future Payoff from Purchase (Left Panel), and Average Predicted

Purchase Probability (Right Panel), Computed from the Estimation Model.

J Supplementary Estimation Results

In this section we present estimation results from all of our additional specifications, as well as

additional results from the main specification. Table 23 contains the dynamic parameter estimates

resulting from increasing consumption rates by 25%.

We also estimated a version of the model with demographic interactions. Sample averages of

these demographic variables are shown in Table 22. We include four demographic variables, all of

which are coded as dummy variables. The income variable codes whether the household’s income

is above $35,000 (the median in our estimation sample), whether the household head’s age is about

55 years (also the median household age in the sample), whether the household head has a college

degree, and whether the household has 3 or more individuals in it. The estimation sample somewhat

oversamples elderly households and households with 2 individuals, relative to the U.S. population.

In Table 24, we present the overall estimated coefficients from this specification. The results are

qualitatively similar to the results in our main specification in the paper, in particular, we still find

that there is a significant spread in the discount factors with a sizeable share of forward-looking

individuals. Table 25 shows the estimated marginal impact of each demographic variable on all

the parameters which are allowed to vary across the population. In estimation, the untransformed

mean vector of these parameters for household i is b′Zi, where Zi is a matrix of demographic

characteristics for the household and b is a matrix of underlying mean parameters. The first column
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Table 22: Averages of Demographic Dummy Variables

Variable Average

HH Income ≥ $35,000 0.59

HH Head Age ≥ 55 0.64

HH Head has college degree 0.21

HH Size 3+ 0.32

Table 23: Dynamic Parameter Estimates: Consumption Rates Increased by 25%

Parameter 1st Tertile Median Mean 2nd Tertile

Price Coefficient -0.3198 -0.2546 -0.468 -0.2084

[-0.3428, -0.2982] [-0.2702, -0.2407] [-0.568, -0.3484] [-0.2207, -0.1974]

Stockout Cost 0.2507 0.3703 0.6424 0.5412

[0.2028, 0.3064] [0.3135, 0.428] [0.5523, 0.7323] [0.4618, 0.6277]

Discount Factor 0.1084 0.9458 0.5975 0.9997

[0.0078, 0.3979] [0.8045, 0.9942] [0.5447, 0.6526] [0.9982, 1]

Fixed Cost of Purchase - - -2.0976 -

[-2.221, -1.9915]

Log-likelihood -20896.8188

Notes: This table shows average moments of the posterior distribution of the population distribution of the

dynamic parameters. Only the mean is shown for parameters that are fixed across the population. For

example, the median columns shows the average of the population median of a given parameter, where the

average is taken across MCMC draws. Square brackets show 95% confidence intervals.

of this table shows the estimated parameter at the modal value of the demographic variables. For

example, if we denote the modal demographics in matrix form as Z, then for the price coefficient

we show in the first column exp(b′lZ), where l is the row of b corresponding to the untransformed

price coefficient. The table shows this value averaged across saved draws. Each column shows how

the estimated parameter changes when the corresponding demographic variable is changed from

zero to one. For example, if a household is high income its price coefficient is closer to zero by

0.009 (i.e., higher income households are more price sensitive). Most of the interactions are not

statistically different from zero, which accords with some of our artificial data experiments, where

we found it difficult to identify the coefficients of the demographic interactions.
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Table 24: Dynamic Parameter Estimates: Including Demographic Interactions

Parameter 1st Tertile Median Mean 2nd Tertile

Price Coefficient -0.2933 -0.2437 -0.2746 -0.2062

[-0.307, -0.2802] [-0.2542, -0.2333] [-0.2854, -0.2637] [-0.2152, -0.1971]

Stockout Cost 0.3568 0.4925 0.6583 0.6697

[0.2796, 0.441] [0.3897, 0.5937] [0.5252, 0.7871] [0.5363, 0.8034]

Discount Factor 0.086 0.7901 0.5634 0.9976

[1e-04, 0.474] [0.0829, 0.9953] [0.441, 0.6625] [0.979, 1]

Fixed Cost of Purchase - - -1.8309 -

[-1.8987, -1.7565]

Log-likelihood -19569.9431

Notes: This table shows average moments of the posterior distribution of the population distribution of the

dynamic parameters. Only the mean is shown for parameters that are fixed across the population. For

example, the median columns shows the average of the population median of a given parameter, where the

average is taken across MCMC draws. Square brackets show 95% confidence intervals.

Table 25: Marginal Effects of Demographic Variables

Parameter Baseline HH Income HH Head Age HH Head College HH Size

Price Coefficient -0.25 0.042 -0.045 0 -0.006

[0.006, 0.077] [-0.077, -0.01] [-0.036, 0.036] [-0.048, 0.032]

Stockout Cost 0.469 -0.036 -0.176 0.258 -0.181

[-0.246, 0.158] [-0.445, 0.139] [-0.024, 0.557] [-0.312, -0.001]

Discount Factor 0.563 -0.435 0.497 -0.037 0.243

[-0.993, 0] [0.001, 0.966] [-0.838, 0.754] [-0.204, 0.889]

Notes: This table shows the estimated impact of changing one of the demographic dummy variables from zero to one on a

particular parameter. The respective demographic dummy variables are defined to be 1 under the following conditions: Income

above $35,000; age of household head above 55; household head has a college degree; size of household is more than 2 individuals.

The baseline column shows the predicted value of a parameter at the mode of the demographic distribution. The modal values

are high income, older household head, no college degree, and two individuals in the household.
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K Formal Propositions Related to Identification Discussion

In this section we provide formal conditions to guarantee when the future value of purchase decreases

in inventory, and increases in the discount factor, as discussed in Section 4. These two properties

are difficult to formally prove in situations where there is a choice-specific error that is unobserved

to the researcher, because there are generally no closed form solutions for the consumer value

functions. Therefore, our proof involves two steps. We augment the model from Section 3 by

multiplying the choice-specific error in equation (2) by a weight η ≥ 0, and first, we prove the

properties are true in a simple setting where the error term has zero variance (η = 0); in this

situation we can derive analytical formulas for consumer policy and value functions. Second, we

demonstrate that the value function is continuous in η under some regularity conditions on the

error term. Hence, as long as payoffs is bounded, it will be the case that in some neighborhood of

η = 0, the two properties will still hold.

To keep the notation and the proofs analytically tractable, we will make a few more simplifying

assumptions, some of which we can relax. We consider the case where all the model parameters

are homogeneous across the population, and thus will drop the i subscript on everything except

the state variables and the error term. We also normalize the consumption utility, γ, to 0, as we

mention in Section 3. We also make five simplifying assumptions below:

Assumptions A1’-A5’

1. The consumption rate is constant across time and individuals: cit = 1 for all i, t.

2. In a given purchase occasion, the maximum number of packages a consumer is allowed to buy

is 1.

3. Prices are fixed over time at a level p > βb−1ω1 ≥ 0.

4. Purchasing at 0 inventory is preferred to running out: 1−βb−1

1−β ω1 + p < ν.

5. The storage cost function is weakly increasing and weakly convex, and storage costs are

weakly positive.

Assumption A1’ is made for convenience; it can be shown that the propositions in this section will

still hold under stochastic consumption needs (proofs are available upon request). Assumptions

A2’ and A3’ are made for tractability. A2’ ensures that the only decision for a consumer is to

buy or not buy. A3’ ensures that the consumer value function is only a function of inventory, i.e.,

V (I, p) = V (I). The lower bound on prices of βb−1ω1 imposed in A3’ is necessary for our proof of

Proposition 1 to hold when I = 0. Assumptions A3’ and A4’ imply that the stockout cost will be
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positive, as both p > 0 and ω1 ≥ 0. Because of A3’, we need to normalize the price coefficient, α,

to 1 (we address identification of this parameter in Sections 4 and L). We will relax A3’ and A4’

in Section L.2 where we explore additional model properties that can help with identification.

Below we formally state three propositions related to a consumer’s incentive to purchase. We

define next period’s inventory as I ′1(I) ≡ I − 1 + b if a purchase is made or I ′0(I) ≡ max{I − 1, 0}

if no purchase is made. In order to prove the first two proposition, we first need to derive an

individual’s optimal policy, which we do in Lemma 2 below.

Lemma 1 If A1’-A5’ hold and η = 0, then it is optimal to purchase only when I = 0, for all β.

Proof.

Case 1: β = 0. This is given by A4’.

Case 2: β > 0.

First note that if a consumer only buys when I = 0, then I ≥ 0. Then by A1’ and A4’, a

consumer always receives γ = 0,∀t, she pays the storage cost of a single package, ω1, for all periods

except the period where she starts with a single unit, and she pays the price when she runs out.

The consumer will never have more than a single package in storage. Her utility at any level of I

(and note that I ≤ b) will be

U(I) = −1− βI−1

1− β
ω11{I > 1}+ βIV (0).

If the consumer chooses to buy when inventory is zero, it can be shown that the value of having

zero inventory, V (0) is

V (0) = − 1− βb−1

(1− β)(1− βb)
ω1 −

p

1− βb
. (38)

Hence the discounted sum of utility will be

U(I) = −1− βI−1

1− β
ω11{I > 1} − βI 1− βb−1

(1− β)(1− βb)
ω1 −

βIp

1− βb
. (39)

Claim 2a: It is not optimal for a consumer to choose not to buy when I = 0.

If a consumer chooses not to buy when I = 0, then the discounted sum of utility received at 0

inventory is Ṽ (0) = −ν
1−β , and her utility at inventory level I would be

Ũ(I) = −1− βI−1

1− β
ω11{I > 1} − βIν

1− β
.

Note that U(I) > Ũ(I), since
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1− βb−1

(1− β)(1− βb)
ω1 −

p

1− βb
>

1− βb−1

(1− β)(1− β)
ω1 −

p

1− β
>
−ν

1− β
,

where the last inequality follows from A4’. This shows Claim 2a.

Claim 2b: It is not optimal for a consumer to choose to buy when I > 0.

Consider equation (39). Suppose the consumer considers a one time deviation where she pur-

chases early, and suppose the storage cost does not increase (this will only be the case if I = 1, or

if ω1 = 0 and ω2 = 0, as a result of A5’). Then the consumer pays a price p today and delays the

next price paid until I + b periods. However such a strategy cannot be optimal since

−p− βI+b

1− βb
p < −p βI

1− βb
.

It is clear that if purchasing early increases storage costs, a one time deviation cannot be optimal.

Now last suppose a consumer is using a strategy of always purchasing when I = I > 0. One

can use the same argument to show the consumer could improve her utility by waiting to purchase

until I = 0: even if storage costs are zero she would improve utility by delaying paying the price p

until later on. This proves the claim.

Proposition 1 If A1’-A5’ hold and η = 0, then β ∗ [V (I ′1(I))− V (I ′0(I))] is strictly decreasing in

I, for β > 0, I ≥ 0.

Proof.

Recall that Lemma 2 implies a consumer does not buy until she runs out. As a result, one can

derive a formula for V (I), the value function for all inventory values of I, in terms of the value

function of having I = 0 units, V (0) (the formula for V (0) is equation (38)). We denote as x the

number of packages held by a consumer, and n = I − b(x− 1) to be the number of units left in the

package currently begin consumed by an individual. The formula for the value function will be

V (I) = −1− βn−1

1− β
ωx −

x−1∑
k=1

βn−1+b(k−1) 1− βb

1− β
ωx−k + βIV (0) (40)

The future value of purchasing is β[V (I − 1 + b)−V (max{I − 1, 0})]. We consider two cases in the

proof, and focus on the value function difference V (I − 1 + b)− V (max{I − 1, 0}). First, suppose

that I > 0. In this case we will split up the value function difference V (I − 1 + b)− V (I − 1) into

two terms:

V (I − 1 + b)− V (I − 1) = ∆1 + ∆2
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We define ∆1 to be the difference in the terms in equation (40) that contain storage costs, and let

n = I − 1− b(x− 1):

∆1 = −1− βn−1

1− β
∆ωx+1 −

x−1∑
k=1

βn−1+b(k−1) 1− βb

1− β
∆ωx−k+1 − βn−1+b(x−1) 1− βb

1− β
ω1

The second term, ∆2, is defined to be the difference in the final term of (40), which contains V (0):

∆2 = (βI+b−1 − βI−1)V (0)

= βI−1(βb − 1)V (0)

= −β
I−1(βb − 1)

1− βb
1− βb−1

1− β
ω1 −

βI−1(βb − 1)p

1− βb

=
βI−1(1− βb−1)

1− β
ω1 + βI−1p (41)

The derivations above follow from the formula for V (0), which we showed in equation (38). Consider

the impact of storage costs on the value function difference. This difference can be written as ∆1

plus the second term of equation (41):

∆1 +
βI−1(1− βb−1)

1− β
ω1 = −1− βn−1

1− β
∆ωx+1 −

x−1∑
k=1

βn−1+b(k−1) 1− βb

1− β
∆ωx−k+1 − βn−1+b(x−1)ω1

As a result the value function difference can be written as

V (I−1+b)−V (I−1) = −1− βn−1

1− β
∆ωx+1−

x−1∑
k=1

βn−1+b(k−1) 1− βb

1− β
∆ωx−k+1−βn−1+b(x−1)ω1+βI−1p.

(42)

Note that as I increases, two things happen. First, the storage cost terms in (42) will weakly get

more negative due to A5’. Second, the final term, βI−1p, will decrease since β < 1. This proves

the claim for I > 0.

For I = 0, it is sufficient to show V (b)−V (0)− [V (b−1)−V (0)] < 0, ie, that the value function

difference declines when inventory at the beginning of the period decreases from 1 to 0 units. This

difference can be written as:

V (b)− V (0)− [V (b− 1)− V (0)] = V (b)− V (b− 1)

= ω1 −
1− βb−1

1− βb
ω1 −

1− β
1− βb

p
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The inequality holds as long as p > βb−1ω1, which we assume in A3’.

To see the intuition behind the proof of Proposition 1, note that β ∗ [V (I ′1(I)) − V (I ′0(I))]

captures the net gain in future discounted utility from making a purchase. The higher the current

inventory, the smaller this net gain because the point of making a purchase is to avoid paying the

stockout cost.

Moreover, because future discounted utility increases with β, the net future gain of making a

purchase does as well. This is the main intuition behind the proof of Proposition 2 stated below.

Proposition 2 If A1’-A5’ hold and η = 0, then β ∗ [V (I ′1(I)) − V (I ′0(I))] is increasing in β, for

I ≥ 0 and sufficiently small storage costs.

Proof.

As with Proposition 1, we start with the case where I > 0. In this case we need to show

∂β(V (I − 1 + b)− V (I − 1))

∂β
= V (I−1+b)−V (I−1)+β

(
∂(V (I − 1 + b)− V (I − 1))

∂β

)
> 0. (43)

Note that the sign of the first term, V (I − 1 + b) − V (I − 1) > 0, depends on the magnitude of

storage costs. The derivations in the proof of proposition 1 (see equation (42)) show that this will be

positive for sufficiently small storage costs. Next, we want to sign the derivative ∂(V (I−1+b)−V (I−1))
∂β .

It is possible to show that this derivative is positive if storage costs are sufficiently small.

Note that in general the derivatives of the storage cost component of equation (42) do not have

a clear sign. For instance, the derivative of the first term is

(n− 1)βn−2(1− β)− (1− βn−1)

(1− β)2
∆ωx+1,

which could be negative (ie for small β). The terms in the summation sign will have derivatives

that look as follows:

[
−(n− 1 + b(k − 1))βn−2+b(k−1) 1− βb

1− β
+ βn+b(k−1) bβ

b−1(1− β)− (1− βb)
(1− β)2

]
∆ωx−k+1,

which again may be negative. The term −βn−1+b(x−1)ω1 will be decreasing in β. Note that if

storage costs are zero, then it will be the case that V (I − 1 + b)− V (I − 1) = βI−1p. In this case

the derivative will be

V (I − 1 + b)− V (I − 1) + β
∂(V (I − 1 + b)− V (I − 1))

∂β
= βI−1Ip,
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which is positive. Because the difference in value functions is continuous in storage costs, the above

derivative will still be positive, as long as storage costs are sufficiently small.

When I = 0, we focus on the expected future value of purchase which is

β(V (b− 1)− V (0)) =
β − βb

1− β

[
1 +

1− βb−1

1− βb

]
ω1 +

β − βb

1− βb
p.

The derivative with respect to β of the term β−βb

1−βb , which multiplies p, is 1
1−βb > 0. The derivative

of the term that multiplies ω1 has no obvious sign, however if ω1 is sufficiently small the derivative

of β(V (b− 1)− V (0)) will be positive.

Note that the size of the storage cost clearly plays a role in the proof of Proposition 2, because

if storage costs increase sharply when inventory increases then a forward-looking individual’s future

payoffs would be reduced by an increase in inventory.

Both Propositions 1 and 2 assume that there is no error term in the utility function. We will

derive a third proposition that shows these two propositions still hold in a random utility framework.

The argument relies on showing that the expected future value of purchase is continuous in η, and

this requires us to make some regularity assumptions on the error term, and put boundedness and

sign restrictions on the payoffs:

Assumptions E1-E2

1. Continuity and support: The CDF of the difference in ε1 − ε0, F , is continuous, strictly

increasing, and has support (−∞,∞).

2. Value function: There exists a bound on η, η, such that if η < η, then the following hold:

I > 0 : −p− (ωB+1 − ωB1{I > c}+ β[V (I + b− 1)− V (I − 1)] < 0

I = 0 : −p− (ω1 − ν + β[V (b− 1)− V (0)] > 0

where the number of packages held at the end of the period, B, is d(I + b− 1)/be if I > 1 and

0 if I = 1.

Lemma 2 If assumptions A1’-A5’ and E1-E2 hold then the expected future value of purchasing,

β [V (I ′1(I))− V (I ′0(I))], is continuous in η.

Proof.

For I > 0, the probability of a purchase can be written as
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P (I) = F ((−p− (ωB+1 − ωB1{I > 1}+ β(V (I + b− 1)− V (I − 1)))/η), (44)

while the probability of purchase for I = 0 is

P (I) = F ((−p− (ω1 − ν + β(V (b− 1)− V (0)))/η). (45)

The value function for I > 0 can be written as

V (I) = P (I)(−p− ωB+1 + βV (I + b− 1)) + (1− P (I))(−ωB1{I > 1}+ βV (I − 1)).

(46)

Under E1 and E2 it is the case that if I − c ≥ 0 then

lim
η→0−

P (I) = 0,

and otherwise

lim
η→0−

P (I) = 1.

The limits above are taken from the left as we assume that η ≥ 0. If we consider the first limit, we

know that if I > 0 then for η sufficiently close to zero, the net value of buying becomes negative,

which we assume in E2 (and Lemma 1 implies this inequality holds for η = 0). For η arbitrarily

small and positive the term (−p − (ωB+1 − ωB1{I > 1} + β(V (I + b − 1) − V (I − 1)))/η will be

negative and will approach −∞. E1 guarantees that the probability in (44) will approach 0. A

similar argument applies to the second limit in the context of equation (45). As a result, it is clear

that the limit as η approaches zero of equation (46) will equal the value function that is obtained

when η = 0, which we derive in the proofs of Lemma 1 and Lemma 2. Similar findings will be

obtained for the value function when I = 0.

This Lemma can be used to show the following proposition:

Proposition 3 If A1’-A5’ hold, Propositions 1 and 2 hold for values of η in a neighborhood of 0.

Proof.

Lemma 1 implies that the value functions are continuous in η, and as a result the value function

difference, β [V (I ′1(I))− V (I ′0(I))], is also continuous in η. We have shown through Proposition 1

that β [V (I ′1(I1))− V (I ′0(I1))] − β [V (I ′1(I2))− V (I ′0(I2))] < 0 for I1 > I2 and η = 0, and hence
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continuity implies that this inequality will also hold for values of η in some neighborhood of 0. A

similar argument can be applied to the result of Proposition 2: If β1 [V (I ′1(I);β1)− V (I ′0(I);β1))]−

β2 [V (I ′1(I);β2)− V (I ′0(I);β2))] > 0 for β1 > β2 and η = 0, the inequality will still hold for values

of η that are near zero.

Proposition 3 enables us to tie Propositions 1 and 2 to observable choice behavior by showing

that the propositions hold in a random utility framework. Note that without an error term, myopic

and forward-looking individuals behave the same way: they wait until I = 0 to make a purchase.

However, with an error term an individual may purchase when I > 0. Proposition 3 implies that

an individual’s purchase probability will rise as inventory decreases. Since the magnitude of the

incentive to purchase can be measured from choice probabilities, the rate at which the purchase

probability drops as inventory rises will be increasing in the discount factor, which we show in

Section 4 leads to identification of that parameter.

L Identification with Unobserved Inventory

In this section, we provide additional discussion related to identification when inventory is un-

observed and cannot easily be imputed, as we discuss in Section 4. Although inventory itself is

unobserved, the time between purchases, which is correlated with inventory, is observed. As a

result, the discount factor may be identified from the impact of interpurchase time on a consumer’s

purchase probability, which is captured by the purchase hazard. We emphasize that the discussion

below is based on numerical solutions and is not intended to be a general proof.

In this appendix we relax the assumption of a constant consumption need, since stochastic

consumption needs can affect the purchase hazard, and hence potentially interact with identification

of other model parameters.34 In particular, we allow the consumption need cit to be stochastic, and

it can only take either 1 or 2. We denote the probability that an individual receives a consumption

draw of 1 as πc. In the numerical solutions below we also assume that the package size, b, is 8

units, we will allow consumers to store up to M = 3 packages, and we will assume the error term is

standard logit. When we compute the purchase hazard, we will need to simulate out inventory at

the time of purchase using the steady state distribution of inventory in the population. To compute

34Assuming a constant consumption rate can simplify the identification arguments. In particular, if individuals

generally make purchases when they run out of a product, then the consumption rate can be calibrated from the

overall quantity an individual buys divided by the length of the time period during which the individual is observed.

Then it will be possible to get a very good prediction of inventory from the interpurchase time, and the arguments

from the prior section can be applied.
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this distribution this we will simulate purchases for 500 individuals for 600 periods. We will assume

that in period 0 all individuals have 0 inventory. We find that aggregate inventory appears to reach

the steady state at around 50 periods, so we will use periods 400 to 600 to compute steady state

inventory. For much of the discussion (except the final discussion of Section L.2) we will also hold

prices fixed over time at a level of 2, and will normalize the price coefficient α = 1.

Remarks: It is worth comparing our approach here with that in Hendel and Nevo (2006b),

which proposes a series of tests for the presence of forward-looking behavior in storable goods

markets. Hendel and Nevo (2006b) develop a stockpiling model with endogenous consumption from

inventory, and where consumers are able to purchase quantities in continuous amounts. In their

setting, a myopic consumer will always purchase exactly the amount she will consume in the period

where the purchase occurs, while a forward-looking consumer will purchase for future consumption.

An implication of the model developed by Hendel and Nevo (2006b) is that the purchase hazard

will be completely flat for myopic individuals, which allows a clean test for the presence of forward-

looking behavior. This type of analysis will apply well to settings where consumers have the ability

to purchase the product category in small increments: for example, canned tuna or soup.

However, in our setting, we assume package sizes are large relative to consumption needs.

Hence, unlike Hendel and Nevo (2006b) the purchase hazard will not be completely flat for myopic

individuals in our set up. Because of this complication, we rely on exclusion restrictions to separate

out myopic consumers from forward-looking consumers, rather than relying on identification from

quantity purchased. Because we rely on exclusion restrictions, we can identify the discount factor

in situations where consumers are only able to purchase a single package in a purchase occasion.

Another key difference is that in our setting we assume consumption needs are exogenous, in the

sense that consumers use just enough of a product to satisfy an exogenous consumption need in each

period (for example, one does not get extra utility from consuming more laundry detergent than is

needed to do the weekly laundry, or one seldom gets extra utility from drinking more coffee than

his/her consumption need). We note that the exclusion restriction may be violated in a setting

where consumption is endogenous, since optimal consumption (and hence flow utility) can be a

function of inventory.

L.1 Identification with Unobserved Inventory and Zero Storage Costs

We begin by considering the case where ωi = 0 for i = 1, ...,M . In Figure 10, we plot the aggregate

probability of purchase in period t + τ given a purchase in period t for different values of the

discount factor. The discount factor primarily affects two features of the purchase hazard. The

first feature is the slope of the purchase hazard in the periods immediately after a purchase occurs.

88



For our particular parameterization, a purchase increases an individual’s inventory by 8 units.

Since consumption shocks are at most 2 units, it will take someone at least 4 periods to run out

and incur a stockout cost. A myopic consumer’s flow utility will not change for the first 3 periods

after a purchase, and as a result her purchase hazard will be completely flat. This can be seen in

Figure 10, where the solid line shows the simulated purchase hazard for a myopic individual. In

contrast, for a forward-looking consumer the purchase hazard has a positive slope over the first

3 periods, and this slope increases as the discount factor rises. This occurs because the expected

future value of purchase rises as inventory drops, as we showed in Proposition 2. It is notable

that without storage costs, there is a clean test for whether individuals are forward-looking or not

- if individuals are myopic, the purchase hazard should be flat for the initial few periods after a

purchase, provided that it takes some time for individuals to run out of a package after a purchase

(which we maintain in Assumption X3). Intuitively, if individuals always use up all their inventory

right after a purchase, then it will be difficult to tell if individuals are myopic or not.
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Figure 10: Probability of purchase in period t+τ given purchase of 1 package in period t. Parameter

values β = 0.25, ν = 0.4, πc = 0.5, ω1 = 0, ω2 = 0, ω3 = 0, η = 1, M = 3, p = 3.31, and logit error

term.

The second, and more subtle difference between the purchase hazards, is that the purchase

hazard becomes smoother as β rises (note that this feature of the purchase hazard is also reflected

in the plot of purchase probabilities as a function of observed inventory shown in Figure 6 - for

more myopic individuals the choice probabilities jump more as inventory changes). The intuition

here is that a myopic consumer is not willing to trade off future utility for current utility, so her
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Figure 11: Probability of purchase in period t + τ given purchase of 1 package in period t, for

different values of the stockout cost. Parameter values πc = 0.5, ω1 = 0, ω2 = 0, ω3 = 0, η = 1,

M = 3, p = 2, α = 1 and logit error term.
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Figure 12: Probability of purchase in period t + τ given purchase of 1 package in period t, for

different values of πc. Parameter values ν = 0.25, πc = 0.5, ω1 = 0, ω2 = 0, ω3 = 0, η = 1, M = 3,

p = 2, α = 1 and logit error term.
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purchase hazard will start to rise sharply at τ = 4, when people in the population start to run out.

In contrast, a forward-looking consumer will be more willing to purchase early, and so the purchase

hazard will be smoother for such a consumer.

In addition to identifying β, the purchase hazard can be used to identify the other model

parameters, ν and πc. It is relatively easy to see how ν and πc are separately identified from β,

as the two parameters affect the purchase hazard in a very different way. To see this, consider the

right panels of Figure 11 and Online Appendix Figure 12, which shows how ν affects the purchase

hazard, for low and high values of the discount factor. Most of the impact of a change in ν on the

purchase hazard occurs during later rather than earlier periods. This is sensible since ν should have

more impact on purchase decisions when consumers begin to run out. Importantly, the shape of

the purchase hazard is preserved as ν changes - for the low value of β, the purchase hazard displays

a lot of curvature around period 4 for different values of ν.

Similarly, the purchase hazard is very smooth for high values of β, and for different values of

ν. The impact of πc on the purchase hazard for different values of β is shown in the left panels of

Figure 11 and Online Appendix Figure 12. For low values of β, the impact of changing πc is quite

similar to that of ν. For high values of β, changing πc shifts the purchase hazard up and down. We

note that the preceding argument suggests that ν and πc could be difficult to separately identify if

β is low. Indeed, as we mentioned in the main body of the paper we encounter this problem in our

empirical application in section 5.2, and need to calibrate the consumption need prior to estimating

other structural parameters.35 The price coefficient, α, will shift the overall purchase probability

and will simply shift the purchase hazard up or down, and so (in the absence of price variation) it

will be identified by the average purchase probability.

L.2 Identification with Unobserved Inventory and Nonzero Storage Costs

If individuals have positive storage costs, the identification argument becomes somewhat more

complicated because increases in storage costs can also increase the slope and decrease the curvature

of the purchase hazard, similar to the discount factor. To see why, note that when an individual

makes a purchase, there is some chance that she has a small amount of a package left over. An

individual in this situation will use up the package within a few periods after the purchase, and will

observe a decrease in their storage costs. That decrease in storage costs will lead to an increase in

the probability of a purchase. To show that this is the case, in Figure 13 we compute the purchase

hazards for different discount factors, with the extreme levels of storage costs that are ten times

35Even if consumption needs are constant, πc essentially controls the average consumption need in our simulation,

which is πc + 2(1− πc). A similar identification issue arises even with a constant consumption need.
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what we estimate. Although it is difficult to see from the plot, the purchase hazard for a myopic

consumer is very slightly positively sloped in the first 3 periods after a purchase - recall in Figure

10 a myopic consumer’s purchase hazard was flat in this region, suggesting that the positive storage

cost parameter is responsible for the increase in slope. Additionally, the solid line in in Figure 13 is

also smoother than the one in Figure 10, suggesting that storage costs can smooth out the purchase

hazard.
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Figure 13: Probability of purchase in period t+τ given purchase of 1 package in period t. Parameter

values ν = 0.4, πc = 0.5, ω1 = 0.017, ω2 = 0.068, ω3 = 0.153, η = 1, M = 3, p = 3.31, α = 1 and

logit error term.

How do we approach the issue of identification in the presence of storage costs? In the following

discussion we explore two different avenues. One avenue is to argue that, because of the exclusion

restrictions, there will not be enough storage cost parameters to completely fit the purchase hazard.

In our example, we compute the purchase hazard for 8 periods, which means we have at least 8

moments. The number of parameters we have to fit these moments is 7 - three storage cost

parameters (ω1, ω2,and ω3), the stockout cost parameter (ν), the discount factor (β), the price

coefficient (α), and the probability of a low consumption shock (πc). Focusing on the discount

factor, it is the case that even in the presence of storage costs, an increase in the discount factor

still increases the slope of the purchase hazard (at least in early periods) and decreases its curvature.

As a result, unless the model’s rank condition fails, letting the discount factor be free will provide

an improved fit to these features of the purchase hazard.36 The exclusion restrictions X1 through

36i.e., the Jacobian of the model’s log-likelihood gradient is singular.
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X3 will help to guarantee that this rank condition holds. Exclusion restriction X1 reduces the

number of model parameters that one needs to estimate to something manageable. Assumption

X3 guarantees that individuals will not run out so quickly that the purchase hazard becomes

degenerate. A caveat to the formal approach is that the rank condition may be difficult to verify in

practice. Moreover, the identification result will be local, rather than global, as global identification

will be more difficult to verify. However, the more overidentifying restrictions a model has, the more

likely we can uniquely identify the parameters of the model.

In practice, we can add more restrictions from the moments that are generated by price variation,

i.e., the propensity for consumers to stockpile in response to price variation.37 A forward-looking

consumer should become more sensitive to discounts as her inventory drops, since the value of

avoiding future stockouts increases with the discount factor. To examine this, we analyze an

extension to the model where we allow the price variable to take on two values, 1 and 2, where the

value of the price follows a Markov transition process. The probability of the price being 2 given it

took a value of 2 in the previous period is 0.8, and the probability of a value of 2 given last period’s

price was 1 is 0.9. Thus most of the time prices are high, but periodically they drop to the low

price for a short time, as is commonly observed in scanner data for storable goods. Additionally,

we relax the restriction that individuals can only purchase a single package, and allow individuals

to purchase up to 2 packages at once. Because we assume that the transition process for prices is

known to consumers, individuals may stock up when prices are low.

One measure of an individual’s propensity to stock up is the amount by which the probability

a person buys 2 units relative to 1 unit increases when the price drops. Intuitively, if a consumer

is myopic she has no need to purchase more than a single package - as a result, the propensity

to purchase more than one package should be driven entirely by the error distribution and any

potential change in storage costs. However, a forward-looking consumer should become relatively

more likely to purchase multiple units at low prices, and this likelihood should increase as inventory

drops (for sufficiently low values of inventory).

In Figure 14, we plot the ratio of probability of buying 2 units to 1 unit at the low price minus

the same ratio at the high price, given t periods have elapsed since the last purchase occured.

The left panel shows how this probability difference changes if there are no storage costs. It is

notable that for a myopic individual, the propensity to stockpile in response to deals is completely

unaffected by inventory, since the moment we show in the graph is totally flat (This occurs because

if the error term is logit, β = 0, and storage costs are zero, for a myopic individual this moment

will be exp(2α)− exp(α); The stockout cost drops out of the probability ratio used to compute this

37Model moments due to price variation are commonly used in estimating stockpiling models.
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moment). However, this moment increases as inventory drops for forward-looking individuals, and

the slope of the curve rises with larger values of β.

The right panel shows how the same moment changes with interpurchase time, with positive

storage costs. Here, the propensity to stockpile in response to low prices still rises if inventory

is sufficiently low. An important point to note is that if the discount factor is low, the slope of

this moment is relatively unaffected by the storage cost (this can be seen by comparing the curves

corresponding to β = 0 and β = 0.5 on the left panel to those on the right panel). However, if

the discount factor is high, the storage costs decrease the slope of the moment, which is intuitive

- if storage costs are high and individuals are forward-looking they should have less incentive to

stockpile at low prices. The fact that the storage costs and discount factor have the opposite effect

on the propensity to stockpile, while they both increase the slope of the purchase hazard, will help

us to separately identify them. We note that price variation will also identify the price coefficient,

but the price coefficient can be identified from the average change in the purchase probability for

the low versus the high price; the preceding argument relies on how stockpiling in response to deal

sensitivity changes as inventory changes.
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Figure 14: Ratio of probability of buying 2 units to 1 unit at p = 1 minus the same ratio at p = 2

in period t, given purchase of 1 package in period 0. Parameter values ν = 0.25, πc = 0.5, ω1 =

0, ω2 = 0, ω3 = 0 or 0.5, η = 1, M = 3, and logit error term.

L.3 Artificial Data Experiments

To provide further evidence that the model above can be identified in realistic settings, even if

inventory is unobserved to the researcher, we perform a series of artificial data experiments where

we simulate data and recover the underlying parameters. Our simulated data is made up of of
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500 households whose purchases are simulated from our model for 600 periods. When simulating

purchases, in period 1 all individuals start with 0 inventory. In field data consumers will have

been making purchases prior to the beginning of the data collection; to mimic such a situation, we

only use periods 201 to 600 to recover the model parameters. We estimate the model parameters

using simulated maximum likelihood, where the likelihood is taken over quantities purchased -

individual inventories are assumed to be unobserved during estimation, as is the case in field data.

As a result, inventories must be simulated out when constructing the likelihood. To integrate out

unobserved inventory in the likelihood construction, we set individual inventories to 0 in period 201,

and draw a series of consumption shocks for each consumer for periods 201 through 600. We draw

100 such consumption paths for each consumer. With simulated consumption shocks and observed

purchase quantities one can construct an estimate of inventory in each period. To mitigate the

impact of assuming 0 inventory in period 201 on the estimated parameters, the purchase likelihood

is constructed using purchases from periods 401 through 600, and for each individual we average

over the 100 simulated paths to reduce simulation noise. Our procedure of using the first part of

a sample to construct inventories is standard in the literature (Erdem, Imai, and Keane (2003),

Hendel and Nevo (2006a)).

To estimate the price coefficient we need sufficient price variation. We assume that the price

takes on 3 values, 0.5, 1 and 2, and prices follow a Markov transition process. If the price is 0.5 or

1, it stays the same with probability 0.1, and becomes 2 with probability 0.9. If the price is 2, it

stays 2 with probability 0.8 and transits to 0.5 or 1 with probability 0.1. The model specification

is derived from the theoretical model of Section 3: We allow consumers to purchase 2 packages

at most, set the package size b = 8, set consumption shocks to be in the set {1, 2}, and restrict

consumers to hold at most 3 packages. The error term is assumed to be logit and the weight on it

is set to η = 1.

The results of the artificial data experiment are shown in Table 26. The top panel shows how

the parameter identification is affected by including storage costs and by letting the storage cost

function be more flexible. In the first 3 columns of this panel, we estimate the model in a situation

where storage costs are zero. The first column shows the estimated parameters, the second the

standard errors, and the third is the true values of the parameters. All the parameters are well

identified. The next three columns show how the results change if we allow ω3 to be free, while

holding ω1 and ω2 fixed at 0. The parameter estimates are still close to the truth, although the

standard errors are larger. If we allow all 3 storage cost parameters to be positive, and estimate all

of them, the standard errors rise significantly, although the parameter estimates are still relatively
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close to the truth.38 Note that the precision on the discount factor drops as the number of storage

cost parameters increases. This highlights the importance of exclusion restrictions. They allow for

more precise identification of the discount factor when it is applied to more of the state space: For

instance, in cases where it might be reasonable to assume that the cost of storing the first 1 or 2

packages is 0. Turning to the other parameters, the storage cost coefficients are also imprecisely

estimated, especially ω3 - its standard error is three times higher than the estimate from the

situation where ω1 and ω2 are fixed. This also highlights the fact that assuming zero storage costs

for the first few packages may aid identification. It is notable that all the other model parameters,

such as α, ν and πc, are well-identified even if storage costs are flexible.

The bottom panel of the table shows how identification of the discount factor varies as consumers

get more forward-looking. The first column shows the case where consumers are essentially myopic.

In this case, the discount factor is not precisely identified. The reason for this is that a consumer

with a positive, but low discount factor such behaves very similarly to a myopic consumer. As the

discount factor rises, the precision with which we can estimate it also rises.

38We do not show the results when we allow for 2 storage costs to be free to save space; in that case the standard

errors are a little higher than when we have only a single free storage cost parameter.
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Table 26: Artificial Data Experiment: Results

No Storage Costs ω2 Free ω1, ω2 Free

Parameter Est S.E. Truth Est S.E. Truth Est S.E. Truth

Price Coeff (α) 1.004 0.007 1 1.002 0.014 1 1.001 0.015 1

Stockout Cost (ν) 0.098 0.01 0.1 0.103 0.006 0.1 0.101 0.036 0.1

Discount Factor (β) 0.957 0.016 0.95 0.957 0.032 0.95 0.954 0.067 0.95

ω1 - - 0 - - 0 0.105 0.059 0.1

ω2 - - 0 - - 0 0.243 0.051 0.25

ω3 - - 0 0.499 0.055 0.5 0.508 0.142 0.5

πc 0.489 0.007 0.5 0.49 4.72e-04 0.5 0.5 0.002 0.5

β = 0.001 β = 0.6 β = 0.99

Parameter Est S.E. Truth Est S.E. Truth Est S.E. Truth

Price Coeff (α) 1.002 0.007 1 1.002 0.009 1 1 0.014 1

Stockout Cost (ν) 0.096 0.022 0.1 0.1 0.011 0.1 0.102 0.006 0.1

Discount Factor (β) 0.001 0.149 0.001 0.619 0.052 0.6 0.994 0.034 0.99

ω1 - - 0 - - 0 - - 0

ω2 - - 0 - - 0 - - 0

ω3 0.479 0.061 0.5 0.47 0.044 0.5 0.488 0.059 0.5

πc 0.492 0.001 0.5 0.496 2.80e-04 0.5 0.494 4.03e-04 0.5

M Figures
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Figure 15: Appendix Figure: Plots of Log-Likelihood (top), MCMC Draws for Selected Dynamic

Parameters
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