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Abstract

Foreign exchange operates as a two-tiered over-the-counter (OTC) market domi-

nated by large, strategic dealers. Using proprietary high frequency data on quotes

by the largest foreign exchange dealer banks in the Dealer-to-Client market, we find a

significant heterogeneity in their behavior. We develop a model of strategic competition

that accounts for this heterogeneity and the two-tier market structure and allows

us to link prices and bid-ask spreads in the D2C and D2D market segments. We

use the model to recover dealers’ risk aversions and inventories from their quotes in

the D2C segment and construct an endogenous measure of systemic, non-diversifiable

risk capturing the cross-sectional liquidity-risk mismatch. Consistent with the model

predictions, we find that liquidity mismatch negatively predicts prices in the D2D

market.
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1 Introduction

The microstructure of the foreign exchange market is extremely complex. Trading is decen-

tralized and has a pronounced two-tier structure, characterized by two important segments:

the dealer to customer (D2C) and the dealer to dealer (D2D) segments. Importantly,

liquidity provision in the D2C segment is fragmented, dominated by a small number of large

dealer banks,1 and these banks are highly heterogeneous in their risk bearing capacity. As

such, dealer banks follow distinct strategies in their market making and liquidity provision.

This heterogeneity combined with market fragmentation implies that the distribution of risk

exposures (inventories) across dealers matters for pricing and market liquidity. The goal of

this paper is to develop a model that accounts for these realistic features of foreign exchange

markets and then test this model using data on dealer quotes and spreads in the D2C and

D2D segments.

Our model features multiple, strategic dealers that compete in providing liquidity to

their customers, absorb (part of) customers inventory shocks, and then trade with each

other in the inter-dealer market to share these inventories. Importantly, dealers (liquidity

providers, henceforth LPs) are heterogeneous in their inventory holding costs (henceforth,

risk aversions), determining their willingness to provide liquidity and hence the spreads they

offer to customers in the D2C segment. A customer’s problem reduces to optimally splitting

the order across multiple dealers to minimize trading costs. By contrast, an LP’s problem is

much more complex due to the non-trivial tradeoff induced by the two-tier market structure.

First, dealer’s decision to set the mid-price and the bid-ask spread in the D2C market is

determined by his inventory management needs and his competition for order flow with

other dealers. Second, the less a given dealer provides liquidity in the D2C market, the

more will customers trade with other dealers, and hence the more will be the size of the

inventory these other dealers will be trying to offload in the D2D market. Most importantly,

1According to recent BIS statistics (see Moore et al. (2016)), in most of the top trading jurisdictions, less
than ten dealers account for 75% of FX turnover.
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since dealers are large and strategic, the D2D market is not perfectly liquid, and dealers

have (endogenous) price impacts that are also heterogeneous: Indeed, less risk averse dealers

face a less elastic residual supply curve because they are trading with high risk aversion

dealers who are reluctant to provide liquidity. As a result, less risk averse LPs have a

higher price impact. This heterogeneity in price impacts combined with the D2D market

clearing leads to an illiquidity-adjusted version of the Capital Asset Pricing Model (CAPM),

whereby equilibrium D2D price is given by the fundamental value net of the risk premium,

given by an endogenous aggregate risk portfolio. In stark contrast to the classical CAPM,

in the presence of imperfect competition the aggregate risk portfolio is different from the

market portfolio and depends on the distribution of inventories across LPs. Since less risk

averse LPs have higher price impact, they end up trading less and hence their inventory

gets a lower weight in the risk premium. The difference between non-diversifiable risk (risk

tolerance-weighted aggregate inventory) and the market portfolio (equal-weighted aggregate

inventory) is what we call the “liquidity mis-match”. By definition, this liquidity mis-match

is given by a (weighted) difference between inventories of low risk aversion LPs and those

of high risk aversion LPs. This mis-match influences equilibrium allocations of risk across

LPs and hence affects the market clearing price in the D2D market. Furthermore, the cross-

sectional dispersion in risk aversions impacts the joint ability of dealers to provide liquidity

in the D2D market and hence influences the D2D bid-ask spreads. As a result, our model

generates two main predictions linking dealers’ heterogeneity to quotes and spreads in the

two market segments:

(1) Liquidity mis-match negatively predicts D2D prices;

(2) Cross-sectional dispersion in risk aversions negatively predicts spreads in the D2D

market.

(3) Customers’ net order flow negatively predicts D2D prices.
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The intuition behind (1) is straightforward: High risk version LPs absorb less shocks in

the D2C market and participate less in trading in the D2D market; hence, their inventories

get lower weights in the endogenous aggregate risk portfolio. Item (2) is more subtle and is

driven by a convexity effect: Dealers’ liquidity provision (as captured by the slope of their

demand schedule in the D2D market) is inversely proportional to their risk aversion, and

total D2D market liquidity is given by the total slope of dealers’ demand. Since the function

1/x is convex, total slope increases in the dispersion of risk aversions. Finally, item (3) is

a standard CAPM effect that does not depend on dealer heterogeneity: When customers

offload their supply shock on dealers, total dealer inventory increases; hence, so does the

total supply in the D2D market, pushing prices down.

We test predictions (1)-(3) using proprietary high frequency data on quotes in the FX spot

market for the EURUSD currency pair by the major dealers in the dealer-to-client market

segment, provided by a major Swiss retail aggregator. We merge these data with data on

quotes and spreads for the same currency pair from Electronic Broking Services (EBS),

one of the largest inter-dealer FX platform in the world.2 Retail aggregators (RAs) act as

intermediaries between retail clients and large foreign exchange dealers (LPs). These LPs

compete for RAs order flow by providing high frequency quotes (bids and asks). Observing

these quotes, RAs decide endogenously how much of the retail clients’ order flow to keep,

and optimally split the rest of their inventory shocks across different LPs. In our model,

the vector of levels (mid prices) and the vector of bid-ask spreads of different LPs are both

functions of their inventories and risk aversions. We derive these functions analytically and

then invert them to recover LPs inventories and risk aversions. Given these inventories

and risk aversions, we compute market clearing prices in the D2D market that come out of

(imperfect) inventory sharing between the (large strategic) dealers. Importantly, since the

retail order flow of the RA comes almost exclusively from Switzerland, and we only consider

2According to Mancini et al. (2013), EBS is the largest inter-dealer FX trading platform, accounting for
60% of total D2D volume.
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the EURUSD currency pair, it is safe to assume that our RA does not have any informational

advantage relative to the LPs, who are all large international investment banks. Thus, we

believe that our assumption of pure inventory-driven trades is well justified.

The data strongly support the key predictions (1)-(2) above. In particular, liquidity

mis-match is non-trivial, and has a significant impact on D2D prices. We then use the RA

customers’ net order flow as a (noisy) proxy for the global retail order flow to test (3) and

also find strong support for this prediction. The fact the order flow of Swiss retail clients

predicts D2D trades in the EURUSD currency pair (the most liquid FX pair in the world)

is surprising.

2 Literature Review

Motivated by the failure of macroeconomic models to explain exchange rate dynamics,3

a growing set of papers shows how order flow and dealer inventories serve as important

determinants of exchange rates.

Lyons (1995) is one of the first to provide strong empirical evidence that dealers’ actively

control their inventories and studies how this inventory control creates a link between order

flow and exchange rates. In particular, consistent with classical theories (see, e.g., Ho and

Stoll (1981)), Lyons (1995) shows that LPs “shade prices”: That is, they shift prices in

the direction opposite to their inventory. While such price shading has been documented

in other markets,4 recent studies find no evidence of price shading in the FX markets. See,

for example, Bjønnes and Rime (2005) and Osler et al. (2011). In contrast to these papers,

and in agreement with Lyons (1995), our empirical results provide strong evidence for price

shading.5

3The fact that exchange rates are only weakly related to macroeconomic fundamentals is known as Meese
and Rogoff (1983) exchange rate disconnect puzzle.

4See, e.g., (Madhavan and Smidt, 1993) and (Dunne et al., 2010).
5In particular, in our additional (non-reported) analysis, we find that a large trade by the retail aggregator

always leads all dealers to adjust the price consistent with the shading theory. As we explain above, the
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In a seminal contribution, Evans and Lyons (2002b) develop the first theoretical model

that accounts for the two-tier structure of the FX market and derive an endogenous link

between order flow and exchange rates. Consistent with the constraints that the real world

FX dealers face, Evans and Lyons (2002b) assume that dealers need to hold zero inventory

overnight. As a result, dealers optimally shade their prices to achieve the zero inventory

target. It is this price shading that leads to a contemporaneous relation between order

flow and exchange rates. Similarly to Evans and Lyons (2002b), ours is a pure inventory-

theoretic model.6 However, it differs from that of Evans and Lyons (2002b) in several

important dimensions. First, we assume that dealers are heterogeneous in their risk bearing

capacities. Second, we introduce strategic competition between dealers for order flow in the

D2C market. Third, we assume that dealers are also strategic when trading in the D2D

market. This assumption is crucial for our main results: It implies that dealers have price

impact and hence the joint distribution of inventories and price impacts (as captured by

the liquidity mis-match) matters for equilibrium prices and allocations. Finally, we apply

our model to very short horizons (up to ten seconds), and hence we do not need to impose

the zero inventory constraint. We believe that all these new ingredients are important for

real world markets and allow us to capture new effects that have not been studied in the

literature before.

Evans and Lyons (2002b) test their model predictions empirically and provide a strong

evidence for a contemporaneous link between order flow and exchange rates using data

on Deutsche Mark/US dollar exchange rates. Their empirical findings have been further

confirmed in numerous papers using various data sets. See, for example, Evans and Lyons

(2002a), Hau et al. (2002), Fan and Lyons (2003), Froot and Ramadorai (2005), Bjønnes et al.

nature of our data suggests that LPs do not learn much from the RA order flow and hence the shading
behaviour is most probably not driven by asymmetric information.

6See, Bacchetta and Van Wincoop (2006), Evans et al. (2011), Evans and Lyons (2005c); Cao et al.
(2006), Frankel et al. (2009), Lyons et al. (2001), King et al. (2010), Michaelides et al. (2018), and Gargano
et al. (2018) for FX microstructure models of exchange rates that rely on private, heterogeneous information.
Incorporating such informational asymmetries into our model is an important direction for future research.
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(2005), Danielsson and Love (2006), Killeen et al. (2006), Berger et al. (2008), Brunnermeier

et al. (2008), King et al. (2010), Rime et al. (2010), Breedon and Vitale (2010), and Bjønnes

et al. (2011). Going beyond the contemporaneous relationships, Evans and Lyons (2005b),

Danielsson et al. (2012), and Evans and Rime (2016) find empirical evidence that order flow

can be used to forecast exchange rate returns at horizons ranging from one day to one month.

In this paper, our focus in on such predictive relationships, but at mush shorter horizons.

We use our model to derive them explicitly and link them to risk aversion heterogeneity and

liquidity mismatch, a new endogenous object that is unique to our model.

Our main predictions derive from dealers’ heterogeneity. The presence of such hetero-

geneity is strongly supported by data. For example, Evans (2002) finds that most of the

short-term volatility in exchange rates is due to heterogeneous trading decisions by dealers;

similarly, Bjønnes and Rime (2005) document significant differences in dealers’ trading styles,

especially related to how they actually control their inventories. Our data on dealer quotes

in the D2C market also suggests the presence of significant heterogeneity: Both the bid-ask

spreads and the sensitivity of quotes to shocks are highly heterogeneous across dealers.

Most of our key predictions depend crucially on the fact that the FX market is not

perfectly liquid and dealers have price impact. While the idea that price impact is linked

to order flow is not new (see, for example, Evans and Lyons (2005a)), to the best of our

knowledge our model is the first to micro-found this price impact in a model that accounts

for the two-tier structure of the FX market. In particular, our model can be used to actually

recover market liquidity from LP quotes, providing an explicit, micro-founded measure of

liquidity risk and shedding new light on the important findings of Banti et al. (2012) and

Mancini et al. (2013).

Finally, we also note that while our focus in this paper is on exchange rates, our theoretical

model is applicable to any market with a pronounced two-tier structure, such as, e.g.,

the bond market (see, Brandt and Kavajecz (2004)) and the CDS market (see, Collin-
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Dufresne et al. (2016)). Furthermore, while we take the agents’ demand shocks as given,

developing a theory of exchange rates that incorporates dealers (intermediaries) and (other)

market microstructure frictions into a macroeconomic model would be a natural extension

of our analysis. Recent papers show that market fragmentation (two tier market structure)

combined with either limited dealers’ risk bearing capacity (Gabaix and Maggiori (2015))

or dealers’ market power (Malamud and Schrimpf (2017)) helps explaining several known

puzzles about exchange rates behaviour in the context of a macro-economic model. We

believe that future research combining the ideas from these papers with a fully micro-founded

imperfect competition intermediation model in our paper may lead to further important

insights.

3 The Model

There are five time periods, t = −1, 0− , 0, 1, 2 and two tradable assets, a risk free asset

with rate of return normalized to zero, and a risky asset with a random payoff d at time

t = 2. We assume that d is normally distributed with mean d̄ and variance σ2
d. The market is

populated by M heterogeneous dealers (liquidity providers), indexed by i = 1, · · · ,M, and n

ex-ante identical customers (liquidity consumers), indexed by j = 1, · · · , n. All agents start

with zero asset inventories. Then, the time line is as follows

• at time t = −1, dealers’ inventory shocks xi, i = 1, · · · ,M are realized and are public

information.7

• At time t = 0−, customers’ inventory shocks vector Θ = {θj}nj=1 is realized; each shock

is customers’ private information. We assume that these shocks are independent and

7This assumption is made for simplicity. This private information is irrelevant for the D2D trading round
because of the ex-post nature of the D2D market mechanism. As for the D2C round, uncertainty about
other dealers’ holdings would slightly complicate the analysis, but would not alter our main results. It would
however become quite important in a multi-period model, in which case it would introduce signaling and
adverse selection effects. As our goal is to focus on risk sharing, we abstract from these effects.
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identically distributed across customers, and are drawn from a binary distribution:

θ takes two values, θH , θL ∈ R. Parameters θ̄ = E[θ] and σ2
θ = Var[θ] are public

information.

• At time t = 0, dealers trade in the dealer-to-customer (D2C) market using a request-

for-quote protocol. In this protocal, each dealer submits a (dealer-specific) binding

price schedule pi(q), i = 1, · · · ,M to each customer, describing the per-unit price at

which he is willing to sell a lot of q units. Given the quoted price schedules, each

customer j optimally chooses the vector of quantities qj = (qj,i)
M
i=1 to trade with the

dealers, and then pays the total price

π(qj) =
M∑
i=1

qj,i pi(qj,i)

to the dealers, ending up holding a total of

q̄j = θj +
M∑
i=1

qj,i

units of the asset. After this trading round, dealer i receives

Πi(Qi) ≡
n∑
j=1

pi(qj,i)qj,i (1)

in cash from the customers, and ends up holding

χi = xi −
n∑
j=1

qj,i (2)

units of the asset.

• At time t = 1, dealers trade in the centralized inter-dealer market to rebalance their

inventories. We assume that this market operates as the standard uniform-price double
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auction (see, e.g., Kyle (1989); Vives (2011); Rostek and Weretka (2015); Malamud

and Rostek (2017)). Dealer i submits a (net) demand schedule Qi(PD2D) : R → R,

which specifies demanded quantity of the asset given its price PD2D in the inter-dealer

market. All dealers are strategic; in particular, there are no noise traders. As is

standard in strategic centralized market models for divisible goods or assets, we study

the Nash equilibrium in linear bid schedules (hereafter, equilibrium). With divisible

goods, equilibrium is invariant to the distribution of independent private uncertainty.8

We denote by Qi(χi,PD2D) the net trade of dealer i with inventory (2) in the D2D

market, so that, post-D2D trade, the dealer ends up with an inventory of

χ̃i = χi + Qi(χi,PD2D) (3)

• At time t = 2, the asset pays off.

We assume that agents incur quadratic costs for holding inventories, which is equivalent

to linearly decreasing marginal values. Importantly, these inventory holding costs are het-

erogeneous across dealers: while customers are assumed to be homogeneous and all have the

same cost γ, dealers are heterogeneous, with dealer i incurring the cost Γi.
9 Thus, customers’

8 That is, the linear Bayesian Nash Equilibrium with independent private endowment values has an
ex post property and coincides with the linear equilibrium that is robust to adding noise in trade (robust
Nash Equilibrium; e.g., Vayanos (1999); Rostek and Weretka (2015)). Equilibrium is linear if schedules have
the functional form of qi(·) = α0 + αi,qq

0
i + αi,pp. Strategies are not restricted to linear schedules; rather,

it is optimal for a trader to submit a linear demand given that others do. The approach of analyzing the
symmetric linear equilibrium is common in centralized market models (e.g., Kyle (1989), Vayanos (1999),
Vives (2011)). Our analysis does not assume equilibrium symmetry. Since equilibrium schedules are optimal
even if traders learn the independent value endowments q0i (or equivalently, stochastic marginal utility
intercepts, d̃ = d − αΣq̃0i ) of all other agents, equilibrium is ex post Bayesian Nash. The key to the ex
post property is that permitting pointwise optimization – for each price – equilibrium demand schedules are
optimal for any distribution of independent private information and are independent of agents’ expectations
about others’ endowments.

9The assumption of homogeneous customers is without loss of generality. By contrast, allowing for dealers’
heterogeneity is crucial for matching their highly heterogeneous empirically observed behavior.
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total expected utility is given by

u(qj) = −π(qj) + E
[
d · q̄j − 0.5γ q̄2

j

]
, (4)

while dealers’ total expected utility is given by

Ui = E
[
Πi(Qi) + Ui(χ̃i,PD2D)

]
, (5)

where Πi(Qi) is the total transfer (1) received from customers, while

Ui(χ̃i,PD2D) = d · χ̃i − 0.5Γiχ̃
2
i − PD2DQi(χi,PD2D) (6)

is dealers’ quadratic utility of his post-D2D trade inventory (3) net of the price PD2DQi(χi,PD2D)

paid for buying Qi(χi,PD2D) units of the asset in the D2D market at the price PD2D.

The strategic aspect of the interaction between the dealers make the model inherently

complex. Each dealer selects a whole mechanism (the price schedule pi(q)), while at the same

time competing with other dealers’ mechanisms and, simultaneously, taking into account the

fact that other dealers effectively serve as liquidity providers to each other during the second

stage of the game (the inter-dealer trading). Such games in competing mechanisms are

known to be extremely complex; even with homogeneous traders, optimal price schedules

are highly non-linear and a symmetric equilibrium often fails to exist. See, e.g., Biais et

al. (2000, 2013), and Back and Baruch (2013). In our paper, the problem is much more

involved because dealers are asymmetric and there is a second stage rebalancing, introducing

another dimension to the strategic interaction. However, the assumption that customer

types θ are binary implies that the dealers’ screening problem is simple: Without loss of

generality, we may assume that dealers always use linear demand schedules: pi(q) = αi +
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λ−1
i q with some αi, λ

−1
i ∈ R , , i = 1, · · · ,M .10 The linearity of the schedule significantly

simplifies the analysis, while allowing us to capture two most important dimensions of the

price schedule: the level effect (through the αi parameter) and the liquidity effect (through

the slope parameter λi, that effectively measures the amount of liquidity that dealer i is

providing to customers; 2λ−1
i is the bid-ask spread for trading one unit of the asset). Thus,

under the binary demand uncertainty in the D2C market, we can follow the standard route

used in most of the market microstructure literature and confine our attention to linear

equilibria, characterized in the following definition.

Definition 1 A linear Nash equilibrium is a collection of policies:

• price schedules pi(q) = αi + λ−1
i q in the D2C market segment, i = 1, · · · ,M ;

• customer demand

qj(θ) = (qj,i(θ))
M
i=1, qj,i(θ) = q

(0)
i + q

(1)
i θj ;

• dealer demand schedules Qi(PD2D) = Q
(0)
i +Q

(1)
i PD2D in the inter-dealer market ;

such that

• dealer demand schedules form a robust Nash equilibrium in the D2D market (that

is, each schedule Qi(PD2D) is the best response to {Qj(PD2D)}j 6=i among all possible

(linear and non-linear) demand schedules;

• dealer price schedules in the D2C market maximize dealers’ expected utility (5) among

all possible price schedules, given customers’ demand functions q(θ) and given the

equilibrium allocation from the second stage game;

• customers’ demand maximizes customers’ utility (4).

10Indeed, dealers rationally anticipate that customer demand can take only two values in equilibrium,
depending on the realization of θ = θH , θL.
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Given the definition of an equilibrium, we follow the standard backward induction proce-

dure: First, we solve for the unique robust linear Nash equilibrium of the second stage game

(the D2D market). Second, we use this equilibrium to calculate dealers’ utilities (5). Third,

we solve for customers’ optimal demand given the linear dealer price schedules. Fourth, we

use customers demand schedules as well as the dealers utilities from the second trading round

to solve for the equilibrium in the liquidity provision game in the D2C market, whereby each

dealer optimal chooses his linear price schedule taking as given the price schedules of other

dealers.

4 Equilibrium in the D2D market

In this section, we use the results in Malamud and Rostek (2017) to provide a characterization

of the unique robust linear Nash equilibrium in the D2D double auction game. Given his

asset holdings χi, agent i’s objective is to choose the trade size Qi in the D2D market

that maximizes his quadratic utility (6) by choosing the optimal trade size Qi. The key

insight for understanding the nature of strategic trading comes from the observation that

the equilibrium demand schedule Qi = Qi(PD2D) of dealer i equalizes his marginal utility

with his marginal payment for each price,

d− Γi (χi +Qi) = PD2D + βiQi,

where βi measures the price impact of trader i (also known as the ‘Kyle’s lambda’; see

Kyle (1985)). βi is the derivative of the inverse residual supply of trader i, which is

defined by aggregation through market clearing of the schedules submitted by other traders,

{Qj(PD2D)}j 6=i. The inverse of price impact is a measure of market liquidity: the lower the

price impact, the smaller the price concession a trader needs to accept to trade, the more

liquid the market. Importantly, it follows from (4) that if trader i knew his price impact
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βi, which is endogenous, he could determine his demand by equalizing his marginal utility

and marginal payment pointwise. Let Qi (·, βi) be the demand schedule defined by (4) for

all prices PD2D by trader i, given his assumed price impact βi,

Qi(PD2D, βi) = (Γi + βi)
−1(d− PD2D − Γiχ

0
i ). (7)

In order to pin down equilibrium price impacts, we note that the market clearing condition

requires that the price impact assumed by dealer i be equal to the actual slope of his inverse

residual supply, resulting from the aggregation of the other traders’ submitted schedules.

Proposition 2 (Proposition 1 in Malamud and Rostek (2017)) shows that the system for

equilibrium price impacts can be solved explicitly.11

Proposition 2 (Centralized Market Equilibrium) A profile of demand schedules and

price impacts {Qi(·, βi), βi}i is an equilibrium if and only if

(i) each trader i submits schedule (7), given his price impact βi,

(ii) trader i’s price impact is

βi =
(∑

j 6=i
(Γj + βj)

−1
)−1

, i = 1, · · · , I.

Furthermore,

(iii) Equilibrium exists and is unique.

(iv) Trader i’s price impact βi is given by

βi =
2Γi

ΓiB − 2 +
√

(ΓiB)2 + 4
,

11For symmetric risk aversions, the equilibrium of Proposition 2 coincides with the equilibrium in Rostek
and Weretka (2011), which in turn coincides with Kyle (1989), without nonstrategic traders and assuming
independent values). The case of symmetric risk aversions has also been studied in Vayanos (1999) and Vives
(2011).
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where B ∈ R+ is the unique positive solution to

∑
j

(ΓjB + 2 +
√

(ΓjB)2 + 4)−1 = 1/2 .

• βi is monotone decreasing in Γi

Corollary 3 characterizes equilibrium trades and prices in the D2D market as a function of

LP risk aversions Γi and LP post-D2C inventories χi (see equation (2)).

Corollary 3 The D2D market clearing price is given by

PD2D = d−Q∗ with Q∗ ≡ B−1

M∑
j=1

(Γj + βj)
−1Γjχj . (8)

The equilibrium post- D2D trade inventory12 of dealer i is

χ̃i = (Γi + βi)
−1Q∗ + (Γi + βi)

−1βiχi . (9)

Dealers’ equilibrium indirect utility (6) is given by

Ui = E
[
χid− 0.5Γiχ

2
i + (0.5Γi + βi)(Γi + βi)

−2(Q∗ − Γiχi)
2
]
. (10)

Formula (8) is a version of CAPM in the D2D market, but with the aggregate risk portfolio

Q∗ replacing the standard, equal weighted market portfolio. Each trader’s allocation (9) is

a combination of dealers’ initial inventory χi and the aggregate risk portfolio Q∗, which is

common to all traders. If the D2D market were competitive, the common portfolio would

be the only risk agents were exposed to in equilibrium. Like in the competitive market, Q∗

represents risk that is not diversified in equilibrium and creates a risk premium in prices,

Q∗ = d − PD2D. With noncompetitive traders, however, the aggregate risk portfolio is a

12See (3).
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function of equilibrium price impact. This is intuitive: what constitutes nondiversifiable risk

in the market depends on market liquidity.

The central consequence of Corollary 3 is that when agents’ risk preferences are heteroge-

neous, the aggregate risk Q∗, which is endogenous, differs from the market portfolio,
∑

i χi.

In particular, the aggregate risk depends on the joint distribution of endowment risk {χi}i

and equilibrium price impact {βi}i rather than on the aggregate inventory alone.

The second main observation is that the D2D market allocates risk in a particular way.

Namely, by Proposition 2, less risk averse agents have greater price impact: if Γ1 < ... < ΓI ,

then β1 > · · · > βI ; less risk averse agents face a more risk averse residual market, and

therefore a less elastic residual supply.

5 Customers’ Problem

In this section, we study customers’ optimization problem. Given the M different price

schedules offered by the dealers, a customer optimally decides on how much to trade with

each dealer. Substituting dealers’ price schedules into customers utility (4), we get that

customers’ optimization problem takes the form

max
{qj,i}Mi=1

−
M∑
i=1

qj,ipi(qj,i) +

(
M∑
i=1

qj,i + θj

)
d− 0.5γ

(
M∑
i=1

qj,i + θj

)2
 ,

taking dealers’ schedules pi(qj,i) = αi + λ−1
i qj,i as given. Define ai = λi(d − αi) to be the

bid-ask spread-normalized deviation from the fundamental value d of the mid-price quoted

by dealer i. Let also a−i =
∑

j 6=i aj be the total liquidity-adjusted mid-quote deviation of

dealers j 6= i, and let λ−i =
∑

j 6=i λj be the total liquidity provided by these dealers.

Writing down the first order conditions, we arrive at the following result.
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Lemma 4 The optimal demand of customer j is given by qj = {qj,i}Mi=1 with

qj,i = δi(ai, λi, λ−i, a−i) + ηi(ai, λi, λ−i, a−i) θj (11)

with

δi =
0.5ai + 0.25γ(aiλ−i − a−iλi)

1 + 0.5γ(λi + λ−i)

ηi = − 0.5γλi
1 + 0.5γ(λi + λ−i)

, i = 1, · · · ,M .

The intuition behind the optimal order splitting strategy of Lemma 4 is as follows: Ideally,

the customer would like to buy from the dealer with the lowest mid-quote and the highest

offered liquidity. Thus, his average demand addressed to dealer i is increasing in ai and is

decreasing in aj (the attractiveness of trading with other dealers). Customer’s demand curve

is naturally downward sloping in his inventory (that is, ηi < 0 for all i), and the size of the

slope is proportional to the liquidity λi offered by dealer i, as well as to customers’ cost of

holding inventory, γ.

6 Dealers’ Optimal Price Schedules and Equilibrium

in the D2C Market

At time t = 1, dealer i selects the optimal price schedule pi(q) that he quotes to all customers,

taking as given other dealers’ price schedules as well as customers’ optimal response (Lemma

4). Substituting (10) into (5), we get that dealers’ objective it to maximize

Ui(ai, λi; a−i, λ−i) = E

[
n∑
j=1

pi(qi,j)qj,i + χid− 0.5Γiχ
2
i

+ (0.5Γi + βi)(Γi + βi)
−2

(
B−1

M∑
j=1

(Γj + βj)
−1Γjχj − Γiχi

)2 ] (12)
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over ai, λi subject to (2) and (11). That is, dealer’s objective is to maximize the total

expected price Πi(Qi) that he receives from his clients, plus the expected autarky utility

χid− 0.5Γiχ
2
i from holding the inventory χi, plus the surplus from trade in the inter-dealer

market. Importantly, dealers’ choice of the price schedule characteristics ai, λi influence both

his direct revenues, the autarky utility, and also the gains from trade in the D2D market.

The latter effect is particularly subtle, and also consists of two components: First, it is the

dealer’s impact on equilibrium price; second, it is the impact of dealer’s liquidity provision

in the D2C market on the inventories of all other dealers: Indeed, the more liquidity the

dealer provides in the D2C market, the less will clients trade with other dealers’, directly

influencing other dealers’ inventories χj, j 6= i, and hence also influencing the surplus from

trade in (13).

Let

Ψ =

(
Γ1

B(Γ1 + β1)
, · · · , ΓM

B(ΓM + βM)

)T

be the vector of weights that define the “aggregate risk” in the D2D market, and let also

Ψi ≡ Ψ − Γi1j=i . Denote also δ ≡ (δi)
M
i=1, η ≡ (ηi)

M
i=1 to be the vectors of coefficients

of customers’ demand (see (11)). Evaluating the expectation in (13), we get the following

expression for dealers’ indirect utility.

Lemma 5 We have

Ui(αi, λi;α−i, λ−i) = xid− nλ−1
i ai(δi + ηiθ̄) + nλ−1

i

[
(δi + ηiθ̄)

2 + η2
i σ

2
θ

]
− 0.5Γi

[
(xi − nδi − nθ̄ηi)2 + nσ2

θη
2
i

]
+ (0.5Γi + βi)(Γi + βi)

−2
[(

Ψi · (x − nδ − nθ̄η)
)2

+ nσ2
θ(Ψi · η)2

] (13)
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and a Nash equilibrium is a collection of (αi, λi)
M
i=1 such that, for all i,

(αi, λi) = arg max
αi,λi

Ui(αi, λi;α−i, λ−i) . (14)

In the Appendix, we write down the system of first conditions for (14). In general, this system

cannot be solved explicitly. However, it is possible to derive analytical approximations to

its solution when dealer heterogeneity is small. Such an approximation allows us to capture

the first order effects of heterogeneity on equilibrium quantities, while preserving analytical

tractability.

7 Small Heterogeneity

Everywhere in the sequel we assume that dealers’ heterogeneity is small. We start with the

case when dealers do not hold any inventory, and risk aversions are homogeneous, Γi = Γ.

Then, the following is true.

Proposition 6 If xi = 0 and Γi = Γ for all i = 1, · · · ,M, and θ̄ = 0, then there exists a

unique symmetric equilibrium and the inverse of the price function slope is given by

λ∗(Γ) =
(M − 2)γ − 2Γ +

√
((M − 2)γ − 2Γ)2 + 8γΓ(M − 1)

2γΓ(M − 1)
,

while ai = 0 for all i. λ∗(Γ) is decreasing in both Γ and γ, and is increasing in M .

The result of Proposition 6 is very intuitive: Liquidity in the D2C market, as captured

by the inverse slope λ∗, is determined by two forces: the willingness (and the ability) of

LPs to take on risk (that is, their cost of holding inventory, Γ) and the LPs’ market power,

determined by their number, M. When Γ increases, or when clients are more aggressively

trying to get rid of their inventory (that is, γ is large), LPs optimally widen the spread.

At the same time, an increase in M creates a competitive pressure on equilibrium spreads,
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driving D2C market liquidity up. In particular, in the competitive limit, as M → ∞, we

have λ∗ → 1/Γ, consistent with the standard, competitive CAPM whereby price sensitivity

to inventory shocks equals the reciprocal of the risk aversion.

Having solved for the equilibrium in the limiting case xi = 0 and Γi = Γ, we will now use

Taylor approximation to compute the equilibrium for the case when inventories (xi), mean

inventory shock θ̄, and heterogeneity in Γi are sufficiently small. In order to state our next

result, we introduce the liquidity mis-match, defined as the risk-aversion-weighted average

of dealer inventories:

Xmismatch ≡
M∑
j=1

(Γi − Γ∗)xj , (15)

where

Γ∗ ≡ 1

M

M∑
j=1

Γj

is the mean risk aversion. By construction, Xmismatch is the spread between inventories of

high risk aversion and low risk aversion dealers and hence it measures the mismatch between

the distribution of inventory risk and their willingness to take on this risk (as captured by

Γi). While in a perfect market this joint distribution is irrelevant, illiquidity and price-

impact imply that the mis-match between risk and risk aversions leads a mis-match between

inventory risk and liquidity. This liquidity mis-match matters in both D2C and D2D market

segments. The former matters because high risk aversion dealers are less willing to provide

liquidity in the D2C market, limiting their ability to efficiently share risk with customers; the

latter matters because high risk aversion dealers are less willing to provide liquidity in the

D2D market, limiting their ability to efficiently share risk with other dealers. LPs rationally

incorporate this mis-match into their D2C quotes. The following is true.

Proposition 7 Suppose that xi are sufficiently small and Γi are sufficiently close to Γ∗, and
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that θ̄ is sufficiently small. Then, there exists a unique equilibrium with13

λi = λ∗(Γ∗) + ΦΓ(Γ∗)(Γi − Γ∗) + O(‖Γ− Γ∗‖2 + ‖x‖2 + θ̄2) ,

where

ΦΓ(x) ≡ − x2(2 + γx)(1 + (M − 1)γx)

(M2 − 2) (γx)2 + 4(M − 1)γx+ 4
< 0

is negative and increasing in M for x > 0 and M > 1. Furthermore,

ai = Φx
0 xi + ΦX

0 X + ΦΓ
0 Xmismatch + Φθ

0 θ̄ + (Γi − Γ∗)[Φx
1 xi + ΦX

1 X + Φθ
1 θ̄]

+ O((‖Γ− Γ∗‖2 + ‖x‖2 + θ̄2)3/2) ,
(16)

where

X ≡
M∑
j=1

xj ,

and Φx
0 ,Φ

X
0 ,Φ

Γ
0 ,Φ

θ
0,Φ

x
1 ,Φ

X
1 ,Φ

Γ
1 ,Φ

θ
1 are rational functions14 of n,M, γ, and Γ∗. Moreover,

Φx
0 > 0 .

Proposition 7 characterizes the optimal strategic behavior of dealers in the D2C market,

given their inventories {xj}Mj=1 and holding costs {Γj}Mj=1. The fact that ΦΓ is negative means

that a high holding cost (risk aversion) dealer is less willing to provide liquidity and hence

sets a wider spread λ−1
i in the D2C market. The fact that Φx

0 is positive means that dealers

13As usual, we use ‖x‖ =
(∑

i x
2
i

)1/2
to denote the Euclidean norm.

14We provide explicit expressions for these coefficients in the Appendix.
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“shade prices” in the D2C market. That is, they shift prices in the direction opposite to

their inventory.15

The most important consequence of Proposition 7 is that forces of competition make each

dealer’s quote depend on other dealers’ inventories and risk aversions. The term ΦX
0 X shows

that the average inventory matters. The term ΦΓ
0 Xmismatch shows how heterogeneity in risk

aversions impacts quotes. This is the first time we see the liquidity mis-match, Xmismatch,

appear in the expressions. This term originates from dealers’ expectations about the D2D

trade, characterized in Corollary 3.

8 The Identification Problem

Our goal is to use Proposition 7 in order to identify the actual (directly unobservable)

dealers’ characteristics {Γi, xi}Mi=1. First, inverting the expression in Proposition 6, we get

that, absent heterogeneity, a bid-ask spread λ−1 in the D2C market implies that dealers’

have a holding cost of

Γ∗(λ) ≡ 1

λ

2 + (M − 2)γλ

2 + (M − 1)γλ
. (17)

Now, given (17), we can recover dealers’ characteristics from the observed prices and spreads

when heterogeneity is small. The following result is a direct consequence of Proposition 7.

Proposition 8 Suppose that ai are sufficiently small and the dispersion in bid-ask spreads

λ−1
i is sufficiently small, and that θ̄ is sufficiently small. Then,

Γi = Γ∗(λ∗) + ϕλ(λ∗)(λi − λ∗) + O(‖λ− λ∗‖2 + ‖a‖2 + θ̄2) (18)

15Recall that ai is negatively related to the mid-quote: ai = λi(d− αi).
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where

λ∗ =
1

M

M∑
i=1

λi and ϕλ(·) =
1

ΦΓ(·)
.

Furthermore,

xi = ϕa0ai + ϕA0 A + ϕA0,λAmismatch + ϕθ0θ̄ + (λi − λ∗)[ϕa1ai + ϕA1 A+ ϕA1,λA
λ + ϕθ1θ̄]

+ O((‖Γ− Γ∗‖2 + ‖x‖2 + θ̄2)3/2) ,

(19)

where

A =
M∑
j=1

aj; Amismatch =
M∑
j=1

(λj − λ∗)aj,

and ϕa0, ϕ
A
0 , ϕ

A
0,λ, ϕ

θ
0, ϕ

a
1, ϕ

A
1 , ϕ

A
1,λ, and ϕθ1 are rational functions of n,M, γ and λ∗. Moreover,

ϕa0(·) = 1/Φx
0(·) > 0 .

xi = ϕa0ai + ϕA0 A + ϕA0,λAmismatch + ϕθ0θ̄ + (λi − λ∗)[ϕa1ai + ϕA1 A+ ϕA1,λA
λ + ϕθ1θ̄]

+ O((‖Γ− Γ∗‖2 + ‖x‖2 + θ̄2)3/2) ,

Proposition 8 is key to our subsequent analysis. It shows how dealers’ risk aversions (see

(18)) and inventories (see (19)) can be uniquely recovered from the observed quotes and

bid-ask spreads. In particular, we see how the liquidity mis-match (15) from Proposition 7

gets mapped in an analogous object in the space of quotes: Amismatch, given by the bid-ask

spread weighted average of transformed quotes, ai = λi(d−αi). Since, by (16), ai is positively

related to xi, while λi are negatively related to λi, we get that Amismatch is negatively related

to the liquidity mismatch, Xmismatch.

In the next section we will substitute these recovered quantities into formula (8) for the

equilibrium price in the D2D market in order to get an explicit link between prices and
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spreads in the two market segments. However, we believe that the results of Proposition 8

may also be of independent interest for regulators who could potentially use these expressions

to monitor in real time the dynamics of liquidity in the foreign exchange markets.

9 Dynamics and Empirical Predictions: From D2C to

D2D Prices

In this section, we test the basic predictions of our model empirically. To this end, we assume

that, over a sufficiently small, period (such as, e.g., a few seconds), no new fundamental

information arrives, and hence prices in both the D2C and the D2D markets are driven

exclusively by inventory shocks. We assume that all other model parameters including

LPs’ risk aversions Γi, i = 1, · · · ,M stay constant over that time horizon.16 Under this

assumption, formulas of Proposition 8 allow us to identify the unobservable parameter vectors

(Γi) and (xi) from the observable vectors of mid-prices, αi, and bid-ask spreads, bi, in the

D2C market.

Substituting optimal client trades from (11) into formula (2) for the post-D2C trading

inventories of LPs, we can get an expression for those inventories as a function of LPs initial

inventories xi, as well as D2C quotes (αi, λi),

χi = χi(xi, αi, λi, α−i, λ−i) .

Now, using formula (19) from Proposition 8, we can re-express initial inventories xi =

xi(αi, λi, α−i, λ−i) as a function of D2C quotes (αi, λi), which allows us to finally get dealers’

16We do not micro-found the origins of the shocks to LPs risk aversions Γ. These shocks are typically
coming from banks capital requirements, shocks to LPs cost of fundings, and regulatory constraint that may
be binding at a bank level and transmit into individual trading desk behaviour at the bank.
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post-D2C inventories as a function of D2C quotes:

χi = χi(xi(αi, λi, α−i, λ−i), αi, λi, α−i, λ−i) (20)

See Lemma 13 in the Appendix for an explicit expression. We can now substitute post-D2C

inventories (20) into the formula in Corollary 3 and compute the equilibrium price in the

D2D market following the D2C trading round. This brings us to the following result.

Proposition 9 The price P = PD2D in the D2D market is linked to prices in the D2C

market via

PD2D ≈
[
1 +

2γλ∗

(2 +Mγλ∗)[2 + (M − 1)γλ∗]

]
(ᾱ + α̂)

+ (λ∗)2

[
Γ∗(MϕA0,λ + ϕa1) +

Mϕλ(ϕa0 − 0.5n)

M2 − 2M + 2

]
α̂

− 2γλ∗

(2 +Mγλ∗)[2 + (M − 1)γλ∗]
d − Γ∗ϕθ0θ̄ − γ

1

2 + γΛ
λ∗Γ∗Θ .

Proposition 9 provides an explicit expression linking the price in the D2D market to

quotes in the D2C market, as well as client inventory shocks, Θ.17 The most important

consequence of Proposition 9 is that, in the presence of heterogeneity, the joint cross-sectional

distribution of quotes and bid-ask spreads matters for D2D trading. Namely, in addition to

the average mid-quote ᾱi, the price also depends on the bid-ask spread-weighted mid-price

α̂ =
1∑M
j=1 λj

M∑
j=1

(λi − λ∗)αi ,

which is effectively a spread between low bid-ask spread (large λi) mid-quotes and high bid-

ask spread (low λi) quotes. Since prices are negatively related to inventories, α̂ is negatively

related to the liquidity mis-match.

17Note that, while the coefficient on the fundamental value, d, is negative, the price PD2D depends on
positively on d (at it should) due to a positive link between αi and d.
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By Proposition 9, the sensitivity of PD2D to α̂ is given by

1 +
2γλ∗

(2 +Mγλ∗)[2 + (M − 1)γλ∗]
+ (λ∗)2

[
Γ∗(MϕA0,λ + ϕa1) +

Mϕλ(ϕa0 − 0.5n)

M2 − 2M + 2

]
.

The sign and the magnitude of this coefficient is driven may many competing forces in the

two market segments. While do not have analytical results about the sign of this coefficient,

extensive numerical simulations indicate that α̂ has a positive sign. Furthermore, consistent

with the standard CAPM story, the coefficient on customer inventory, Θ, is always negative.

We formalize these results in the following predictions.

Prediction 1. PD2D is positively related to α̂;

Prediction 2. PD2D is negatively related to Θ.

We now discuss the link between bid-ask spreads in the D2D and the D2C market

segments. The most natural measure of bid-ask spreads in our theoretical double auction

model of the D2D market is price impact, 2βi. Indeed, as in the standard Kyle (1989) model,

2βi is the spread between the price at which agent i can sell one unit of the asset and the

price at which he can buy one unit of the asset. The following is true.

Proposition 10 Equilibrium price impacts βi in the D2D market are monotone decreasing

in the dispersion of D2C bid-ask spreads,

1

M

∑
i

(λi − λ∗)2 .

The result of Proposition 10 is a consequence of a convexity effect: Dealers’ liquidity

provision (as captured by the slope of their demand schedule in the D2D market) is inversely

proportional to their risk aversion, and total D2D market liquidity is given by the total slope

of dealers’ demand. Since the function 1/x is convex, total slope increases in the dispersion

of risk aversions, which is in turn proportional to the dispersion in bid-ask spreads. We

formalize the result of Proposition 10 in our last prediction.
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Prediction 3. Bid-ask spreads in the D2D market are negatively related to the dispersion

of D2C bid-ask spreads.

We test Predictions 1-3 in the next section.

10 Empirical analysis

10.1 Empirical specifications

We test the model’s key prediction regarding the joint dynamics of the D2D and D2C mid-

prices. Proposition 9 predicts the following relation between D2C and D2D prices:

PD2D
t+1 = a0 + a1ᾱt + a2α̂t + a3Θt + a4θ̄t ,

where

a1, a2 > 0 .

We test this relation by regressing D2D prices on both ᾱ and α̂, and a set of controls. We

replace dependent and independent variables with their first differences in our main empirical

specification because prices are know to be persistent. Following the extant literature, we

also replace prices by log prices (see for example Evans and Lyons (2002b)). The results are

qualitatively similar when we use prices instead. Thus, our main empirical specification is:

∆pD2D
t+`, ` = a0 + a1∆ᾱt, ` + a2∆α̂t, ` + controlst ,

where

Xt,` = Xt − Xt−` and pD2D
t = logPD2D

t ,
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for several lags ` ranging from 1 to 60 seconds. We include four controls in our analysis.

The first is the liquidity demand of customers ProxyLiqShock, which is a proxy for effects

of Θ and θ̄ on prices. The other three are various measures of the realized order flow in the

D2D market, since Evans and Lyons (2002b) show that this variable is contemporaneously

related to price changes in the D2D market.

10.2 Data description

We test the model’s predictions using three high frequency datasets. The first two datasets

are provided to us the Swissquote bank, one of the top on-line FOREX brokers in the world.

The first dataset contains price schedules for the currency pair “EUR/USD”18 submitted to

Swissquote by the largest FOREX dealers over the period from the 16th of May 2016 to the

1st of June 2016. Price schedules are stepwise functions mapping volumes to bid/ask quotes.

The second dataset contains the orders submitted for execution to Swissquote by it’s clients

for the same currency pair and the same time period. The third dataset is the EBS dataset

provided to us by NEX Data. This dataset is a comprehensive account of FX best bid and

ask aggregated within each second. All data are time-stamped with a 1 second precision.

For the Swissquote datasets, we filter the original data sample on quotes so as to retain

price schedules from a subsample of dealers who were simultaneously providing quotes during

a long continuous time interval within each trading day. After applying such a filtering

procedure, we retain quotes from ten large dealers, which yields approximatively 864000

observations per trading day. We then estimate the mid-price (αj,t) and the marginal half-

spread (bj,t) for each dealer and each time period. We then constructs our dependent variables

using these estimated values.

Our proxy for the customers’ liquidity demand is the net of all seller-initiated orders

and buyer-initiated orders from the Swissquote’s clients (i.e., the net selling pressure). This

18According to the Trennial Central Bank Survey (April 2016), this currency pair accounts for the largest
turnover on the FOREX market.
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definition follows from our assumption that any online broker acts as an intermediary between

retail clients and large dealers, and such brokers are competitive. Then, the net of all seller-

initiated orders and buyer-initiated orders from the Swissquote’s clients (i.e., the net selling

pressure) can be seen as a scaled proxy of total customer shocks of Θ̄t. However, clients’

orders arrive at a much lower frequency compared to the frequency at which dealers update

their quotes, so that the obtained time-series of the proxy of Θ̄ is very sparse. To mitigate

this problem, we smooth the original time series of the aggregate clients’ order flow by taking

a 5-minute moving average.

Finally, our proxy for the D2D price is the mid-price in the inter-dealer market, which

we compute using the EBS dataset. We construct order flow in the D2D market using the

EBS dataset, which provides volume and buy/sell information for each executed transaction,

aggregated at the second level. We compute the following proxies for the D2D order flow:

• OF d2d Vol: Aggregate daily (signed) order flow in the D2D market.

• OF d2d Bin: Aggregate daily binary Buy and Sell executed in the D2D market, where

a buy order is order marked as +1 and a Sell order as −1. This measure replicates the

approach of Evans and Lyons (2002b).

• OF Vol 1h: Aggregate (signed) order flow in the D2D market over the previous 1

hour.

• OF Vol 24h: Aggregate (signed) order flow in the D2D market over the previous 24

hours.

We report the summary statistics for the final merged dataset in Table 1.
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Table 1: Summary Statistics

Variable Mean Std. Dev. Min Max 5% 50% 95%

α 1.1245 0.0081 1.1098 1.1416 1.1133 1.1224 1.1371

b 0.00002 0.00003 0 0.00099 0 0.00001 0.00005

Θ̄ 37 5667 -210403 138445 -6413 0 6500

ᾱ 1.1245 0.0081 1.1098 1.1416 1.1133 1.1223 1.1371

α̂ 0.000001 0.000019 -0.001952 0.000732 -0.000006 0 0.000008

10.3 Empirical results

We start with a test of the first two predictions of our model, that is that our novel measure

of systematic risk positively predicts future FX exchange rates while customers’ order flow

negatively predicts those rates. We regress changes in D2D log prices on both lagged changes

in D2C prices and lagged clients’ order flow proxies, with the lag ` = 10 seconds. Table 2

reports the results of our main the estimation for the ten seconds lag. Heteroscedasticity

and autocorrelation robust standard errors are shown in parenthesis. The first column shows

that our measure of cross-sectional liquidity-risk mismatch in the D2C market, α̂, positively

and significantly forecasts price fluctuations in the D2D market. In terms of economic

significance, an increases in the cross-sectional liquidity-risk mismatch in the D2C market

by 1% results in a 2.9% increase in the FX exchange rate. Column 2 shows a striking

result: Customers’ order flow in the D2C market negatively forecasts price changes in the

D2D market. The negative sign means that an increased in the customers’ liquidity demand

results in future lower price. However, the economic significance is less than that of our

novel measure of systematic risk. The remaining columns show that controlling for lagged

D2D order flow does not change our results.

We repeat this empirical test for lags ` = 1, 5, 15, 20, 30, 40, 45, 50, 60 and present the

results in Tables 4 to 13. There are two main observations from the tables. First, our
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measure of systematic risk in the D2D market is significant for small lags ` and looses

significance as we increase `. This result is intuitive: The heterogeneity among dealers,

which determines our measure of systematic risk, is a function of dealers’ liquidity shocks,

shocks that are not persistent. Second, the predictive power of the D2C customers’ liquidity

demand (ProxyLiqShock) is significant over longer horizons relative to both our measure of

systematic risk and the average mid-price in the D2C market.

[Include Table 2 here.]
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A Proofs

Proof of Lemma 4. The first order condition is

−αi − 2λ−1
i qi + d− γ(

∑
i

qi + θ) = 0

where q = (qi) and this gives

q = (2B + γ1)−1((d− γθ)1− α)

where B = diag(λ−1
i ), α = (αi).

Q.E.D.

Proof of Lemma 5. We have

E[Πi(Qi)] = E[
∑
j

((d−λ−1
i ai)+λ

−1
i (δi+ηiθj))(δi+ηiθj)] = (d−λ−1

i ai)n(δi+ηiθ̄)+λ
−1
i (n(δi+ηiθ̄)

2+nη2
i σ

2
θ) .
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Thus, the utility becomes

E[Ui(χi; (χj)j 6=i)] = (d− λ−1
i ai)n(δi + ηiθ̄) + λ−1

i (n(δi + ηiθ̄)
2 + nη2

i σ
2
θ)

+ (xi − nδi − ηinθ̄)d− 0.5Γi[(xi − nδi − ηinθ̄)2 + η2
i nσ

2
θ ]

+ (0.5Γi + βi)(Γi + βi)
−2
[(

Ψi · (x − nδ − nθ̄η)
)2

+ nσ2
θ(Ψi · η)2

]
= xid− nλ−1

i ai(δi + ηiθ̄) + nλ−1
i

[
(δi + ηiθ̄)

2 + η2
i σ

2
θ

]
− 0.5Γi

[
(xi − nδi − nθ̄ηi)2 + nσ2

θη
2
i

]
+ (0.5Γi + βi)(Γi + βi)

−2
[(

Ψi · (x − nδ − nθ̄η)
)2

+ nσ2
θ(Ψi · η)2

]
.

where we have defined

Ψ =

(
Γ1

B(Γ1 + β1)
, · · · , ΓM

B(ΓM + βM)

)T
and Ψi ≡ Ψ− Γi1j=i .

Now, we have

δ =
[2 + γΛ]a − γAλ

4 + 2γΛ

η = − γλ

2 + γΛ
.

Q.E.D.

Lemma 11 (FOC)
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Proof. It follows from Lemma 4 that

∂aiδj =
1i(j)[2 + γΛ] − γλj

4 + 2γΛ

∂aiηj = 0

∂λiδj = −
2γ
(

2aj + γ[aj(Λ− λj)− (A− aj)λj]
)

(4 + 2γΛ)2
+ γ

aj − A1i(j)
4 + 2γΛ

∂λiηj =
γ2λj

(2 + γΛ)2
− 1i(j)

γ

2 + γΛ
,

where 1i(·) is the indicator function. We make the following definition:

∂aiδ ≡ (∂aiδ1, · · · , ∂aiδn)T =
1

4 + 2γΛ

[
(2 + γΛ)ei − γλ

]
∂aiη = 0

∂λiδ ≡ (∂λiδ1, · · · , ∂λiδn)T = − 2γ

(4 + 2γΛ)2

(
(2 + γΛ)a− γAλ

)
+

γ

4 + 2γΛ

(
a− Aei

)
∂λiη ≡ (∂λiη1, · · · , ∂λiηn)T =

γ2

(2 + γΛ)2
λ − γ

2 + γΛ
ei ,

where ei is the ith coordinate vector. Then, the FOCs are

0 = n(∂aiδi)
[
Γixi − λ−1

i ai

]
+ nλ−1

i

[
(2− nΓiλi)(∂aiδi)− 1

]
(δi + ηiθ̄)

− n(Γi + 2βi)(Γi + βi)
−2
(

Ψi · ∂aiδ
)(

Ψi · (x − nδ − nθ̄η)
)

0 = nλ−2
i ai(δi + ηiθ̄)− nλ−2

i

[
(δi + ηiθ̄)

2 + η2
i σ

2
θ

]
+ nλ−1

i σ2
θ

[
2− Γiλi

]
(∂λiηi)ηi

+ λ−1
i n
[
2(δi + ηiθ̄) + λiΓi(xi − nδi − nθ̄ηi)− ai

]
(∂λiδi + θ̄∂λiηi)

− n(Γi + 2βi)(Γi + βi)
−2
[(

Ψi · (∂λiδ + θ̄∂λiη)
)(

Ψi · (x − nδ − nθ̄η)
)
− σ2

θ(Ψi · ∂λiη)(Ψi · η)
]
.

Q.E.D.

Proof of Proposition 6. We present the proof of the monotonicity results.
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∂λ∗

∂γ
=

√
4Γ2 + γ2(M − 2)2 + 4γΓM − (γM + 2Γ)

γ2(M − 1)
√

4Γ2 + γ2(M − 2)2 + 4γΓM

=
4Γ2 + γ2(M − 2)2 + 4γΓM − (γM + 2Γ)2

γ2(M − 1)
√

4Γ2 + γ2(M − 2)2 + 4γΓM [
√

4Γ2 + γ2(M − 2)2 + 4γΓM + (γM + 2Γ)]

=
−4γ2(M − 1)

γ2(M − 1)
√

4Γ2 + γ2(M − 2)2 + 4γΓM [
√

4Γ2 + γ2(M − 2)2 + 4γΓM + (γM + 2Γ)]

< 0

since M ≥ 2.

∂λ∗

∂Γ
=
−(M − 2)

√
4Γ2 + γ2(M − 2)2 + 4γΓM − γ(M − 2)2 − 2MΓ

2Γ2(M − 1)
√

4Γ2 + γ2(M − 2)2 + 4γΓM
< 0 .

∂λ∗

∂M
=

γ2(M − 2) + (γ + 2Γ)
√

4Γ2 + γ2(M − 2)2 + 4γΓM − 2Γ(γ + 2Γ + γM)

2γΓ(M − 1)2
√

4Γ2 + γ2(M − 2)2 + 4γΓM
.

To show that this derivative is always positive for M ≥ 2 it is enough to show that its

numerator is positive for M ≥ 2. We do so by showing that the numerator is increasing and

positive for M ≥ 2. Consider the numerator. Its derivative with respect to M is

γ

(
γ − 2Γ + (γ + 2Γ)

2Γ + γ(M − 2))√
4Γ2 + γ2(M − 2)2 + 4γΓM

)
.

We now show that the term in brackets is positive. First,

1 ≥ γ(M − 2) + 2Γ√
γ2(M − 2)2 + 4γΓM + 4Γ2

≥ 1− 2γ

γM + 2Γ
.
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Then,

γ + 2Γ ≥ (γ + 2Γ)[γ(M − 2) + 2Γ]√
γ2(M − 2)2 + 4γΓM + 4Γ2

≥ (γ + 2Γ)− 2γ(γ + 2Γ)

γM + 2Γ

2γ ≥ γ − 2Γ +
(γ + 2Γ)[γ(M − 2) + 2Γ]√
γ2(M − 2)2 + 4γΓM + 4Γ2

≥ 2γ

[
1− γ + 2Γ

γM + 2Γ

]
> 0

for M > 1. Thus, to show that λ∗ is increasing, it remains to

γ2(M − 2) + (γ + 2Γ)
√

4Γ2 + γ2(M − 2)2 + 4γΓM − 2Γ(γ + 2Γ + γM)

evaluated at M = is non-negative. When M = 2, the expression above is

2
[
(γ + 2Γ)

√
Γ2 + 2γΓ − Γ(2Γ + 3γ)

]
> 0

for γ,Γ > 0.

Q.E.D.

Proof of Proposition 7. Recall that

δ =
[2 + γΛ]a − γAλ

4 + 2γΛ
; η = − γλ

2 + γΛ
;

∂aiδj =
1i(j)[2 + γΛ] − γλj

4 + 2γΛ
; ∂aiδ =

1

4 + 2γΛ

[
(2 + γΛ)ei − γλ

]
,

where ei is the ith coordinate vector. Consider the first FOC:

0 = n(∂aiδi)
[
Γixi − λ−1

i ai

]
+ nλ−1

i

[
(2− nΓiλi)(∂aiδi)− 1

]
(δi + ηiθ̄)

− n(Γi + 2βi)(Γi + βi)
−2
(

Ψi · ∂aiδ
)(

Ψi · (x − nδ − nθ̄η)
)
.
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We cancel n and multiply by λi and get

0 = (∂aiδi)
[
λiΓixi − ai

]
+
[
(2− nΓiλi)(∂aiδi)− 1

]
(δi + ηiθ̄)

− λi
Γi + 2βi

(Γi + βi)2

(
Ψi · ∂aiδ

)(
Ψi · (x − nδ − nθ̄η)

)
= (∂aiδi)

[
λiΓixi − ai

]
+
[
(2− nΓiλi)(∂aiδi)− 1

] [2 + γΛ]ai − γ(A+ 2θ̄)λi
4 + 2γΛ

− λi
Γi + 2βi

(Γi + βi)2

(
Ψi · ∂aiδ

)(
Ψi · x − nΨi ·

[2 + γΛ]a − γ(A+ 2θ̄)λ

4 + 2γΛ

)
= (∂aiδi)

[
λiΓixi − ai

]
+
[
(2− nΓiλi)(∂aiδi)− 1

] [2 + γΛ]ai − γ(A+ 2θ̄)λi
4 + 2γΛ

− λi
Γi + 2βi

(Γi + βi)2

(
Ψi · ∂aiδ

)(
χ̃ − n

2
Ã + n

γ(A+ 2θ̄)

4 + 2γΛ
Λ̃ − Γixi +

nΓi
2
ai −

γ(A+ 2θ̄)nΓi
4 + 2γΛ

λi

)
= −1

2

[
nΓiλi(∂aiδi) + 1 + nλiΓi

Γi + 2βi
(Γi + βi)2

(
Ψi · ∂aiδ

)]
ai

+ λiΓi

[
(∂aiδi) +

Γi + 2βi
(Γi + βi)2

(
Ψi · ∂aiδ

)]
xi − λi

Γi + 2βi
(Γi + βi)2

(
Ψi · ∂aiδ

)
χ̃

+
n

2
λi

Γi + 2βi
(Γi + βi)2

(
Ψi · ∂aiδ

)
Ã

− λi

[
n

Γi + 2βi
(Γi + βi)2

(
Ψi · ∂aiδ

)(
Λ̃ − Γiλi

)
+ (2− nΓiλi)(∂aiδi) − 1

]
γ(A+ 2θ̄)

4 + 2γΛ

= −1

2
[1 + nc0xi ] ai + c0xixi − λi

Γi + 2βi
(Γi + βi)2

(
Ψi · ∂aiδ

)(
χ̃ − n

2
Ã
)

− γλi
4 + 2γΛ

[
n

Γi + 2βi
(Γi + βi)2

(
Ψi · ∂aiδ

)
Λ̃ − nc0xi + 2(∂aiδi) − 1

]
(A+ 2θ̄) ,

where

c0xi = λiΓi

[
(∂aiδi) +

Γi + 2βi
(Γi + βi)2

(
Ψi · ∂aiδ

)]
= λiΓi

[
[2 + γΛ] − γλi

4 + 2γΛ
+

Γi + 2βi
(Γi + βi)2

(
Γi
2

(
1

B(Γi + βi)
− 1

)
− γ(Λ̃− Γiλi)

4 + 2γΛ

)]
.
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It follows that

ai =
2c0xi

1 + nc0xi

xi −
2λi

1 + nc0xi

Γi + 2βi
(Γi + βi)2

(
Ψi · ∂aiδ

)(
χ̃ − n

2
Ã
)

− 2

1 + nc0xi

γλi
4 + 2γΛ

[
n

Γi + 2βi
(Γi + βi)2

(
Ψi · ∂aiδ

)
Λ̃ − nc0xi + 2(∂aiδi) − 1

]
(A+ 2θ̄) ,

We now write the Taylor series expansion of this FOC. We shall use the following lemma:

Lemma 12 When the dispersion of Γi,t is sufficiently small, we have

Γi,t
Bt(Γi,t + βi,t)

≈ Γ∗t
M

+
1

M2 − 2M + 2
(Γi,t − Γ∗t )

1

Γi,t + βi,t
≈ M − 2

Γ∗t (M − 1)
− (M − 2)2

(M2 − 2M + 2)(Γ∗t )
2
(Γi,t − Γ∗t )

βi,t
Γi,t + βi,t

≈ 1

M − 1
− M(M − 2)

(M2 − 2M + 2)(M − 1)Γ∗t
(Γi,t − Γ∗t ) .

It thus follows that

Γi,t
Γi,t + βi,t

≈ M − 2

M − 1
+

M(M − 2)

(M2 − 2M + 2)(M − 1)Γ∗t
(Γi,t − Γ∗t )

Γi,t + 2βi,t
(Γi,t + βi,t)2

=
Γi,t

(Γi,t + βi,t)2
+

2βi,t
(Γi,t + βi,t)2

≈ M − 2

M − 1

[
1 +

M

(M2 − 2M + 2)Γ∗t
(Γi,t − Γ∗t )

]
M − 2

Γ∗t (M − 1)

[
1 − (M − 1)(M − 2)

(M2 − 2M + 2)Γ∗
(Γi,t − Γ∗t )

]
+

2

M − 1

[
1 − M(M − 2)

(M2 − 2M + 2)Γ∗t
(Γi,t − Γ∗t )

]
M − 2

Γ∗t (M − 1)

[
1 − (M − 1)(M − 2)

(M2 − 2M + 2)Γ∗t
(Γi,t − Γ∗t )

]
=

(M − 2)2

Γ∗t (M − 1)2

[
1 +

M

(M2 − 2M + 2)Γ∗t
(Γi,t − Γ∗t ) −

(M − 1)(M − 2)

(M2 − 2M + 2)Γ∗
(Γi,t − Γ∗t )

]
+

2(M − 2)

Γ∗t (M − 1)2

[
1 − M(M − 2)

(M2 − 2M + 2)Γ∗t
(Γi,t − Γ∗t ) −

(M − 1)(M − 2)

(M2 − 2M + 2)Γ∗t
(Γi,t − Γ∗t )

]
=

M(M − 2)

Γ∗t (M − 1)2

[
1 − M(M − 2)

(M2 − 2M + 2)Γ∗t
(Γi,t − Γ∗t )

]
.
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Moreover,

λiΓi ≈ λ∗Γ∗ + [ΦΓ(Γ∗)Γ∗ + λ∗](Γi − Γ∗) and Λ̃ ≈ λ∗Γ∗

and

Ã =
M∑
j=1

Γj
B(Γj + βj)

aj ≈
Γ∗

M
A +

1

M2 − 2M + 2
AΓ

χ̃ =
M∑
j=1

Γj
B(Γj + βj)

xj ≈
Γ∗

M
X +

1

M2 − 2M + 2
Xmismatch ,

where

AΓ =
M∑
j=1

(Γj − Γ∗)aj and Xmismatch =
M∑
j=1

(Γj − Γ∗)xj

Using the lemma above, to first order approximation, we have

ai = [k0x + k1x(Γi − Γ∗)]xi − [k0x + k1x(Γi − Γ∗)]
(
χ̃ − n

2
Ã
)
− [k0x + k1x(Γi − Γ∗)](A+ 2θ̄)

= [k0x + k1x(Γi − Γ∗)]xi − [k0θ + k1θ(Γi − Γ∗)](A+ 2θ̄) − [k0X + k1X(Γi − Γ∗)]
Γ∗

M

(
X − n

2
A
)

− [k0X + k1X(Γi − Γ∗)]
1

M2 − 2M + 2

(
Xmismatch −

n

2
AΓ
)

= [k0x + k1x(Γi − Γ∗)]xi − [k0θ + k1θ(Γi − Γ∗)](A+ 2θ̄) − [k0X + k1X(Γi − Γ∗)]
Γ∗

M

(
X − n

2
A
)

− k0X

M2 − 2M + 2

(
Xmismatch −

n

2
AΓ
)

= [k0x + k1x(Γi − Γ∗)]xi − [k0X + k1X(Γi − Γ∗)]
Γ∗

M
X − k0X

M2 − 2M + 2
Xmismatch

−
[

2Mk0θ − nk0XΓ∗

2M
+

2Mk1θ − nk1XΓ∗

2M
(Γi − Γ∗)

]
A +

n

2

k0X

M2 − 2M + 2
AΓ

− [k0θ + k1θ(Γi − Γ∗)]2θ̄ ,
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Summing over i we get

AΓ = k0xXmismatch

A = k0xX + k1xXmismatch − k0XΓ∗X − Mk0X

M2 − 2M + 2
Xmismatch

− 2Mk0θ − nk0XΓ∗

2
A +

n

2

Mk0X

M2 − 2M + 2
AΓ − 2Mk0θθ̄ .

Thus,

A =

[
1 +

2Mk0θ − nk0XΓ∗

2

]−1(
[k0x − k0XΓ∗]X +

[
k1x −

(2− nk0x)Mk0X

2(M2 − 2M + 2)

]
Xmismatch − 2Mk0θθ̄

)
.

Substituting into the equation for ai we obtain

ai = [k0x + k1x(Γi − Γ∗)]xi − [k0X + k1X(Γi − Γ∗)]
Γ∗

M
X

−
[

2Mk0θ − nk0XΓ∗

M
+

2Mk1θ − nk1XΓ∗

M
(Γi − Γ∗)

]
k0x − k0XΓ∗

2 + 2Mk0θ − nk0XΓ∗
X

−
(

1 − n

2
k0x

) k0X

M2 − 2M + 2
Xmismatch

−
[

2Mk0θ − nk0XΓ∗

M
+

2Mk1θ − nk1XΓ∗

M
(Γi − Γ∗)

]
k1x − (2−nk0x)Mk0X

2(M2−2M+2)

2 + 2Mk0θ − nk0XΓ∗
Xmismatch

+

[
2Mk0θ − nk0XΓ∗

M
+

2Mk1θ − nk1XΓ∗

M
(Γi − Γ∗)

]
2Mk0θ

2 + 2Mk0θ − nk0XΓ∗
θ̄

− 2[k0θ + k1θ(Γi − Γ∗)]θ̄ .

It follows that

ai = Φx
0 xi + ΦX

0 X + ΦΓ
0 Xmismatch + Φθ

0 θ̄ + (Γi − Γ∗)[Φx
1 xi + ΦX

1 X + Φθ
1 θ̄]

+ O((‖Γ− Γ∗‖2 + ‖x‖2 + θ̄2)3/2) ,
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with

Φx
0 = k0x; Φx

1 = k1x

ΦX
0 = −

[
2k0XΓ∗ + k0x (2Mk0θ − nk0XΓ∗)

2 + 2Mk0θ − nk0XΓ∗

]
1

M
;

ΦX
1 = −

[
k1XΓ∗(2 + 2Mk0θ) + 2Mk1θ(k0x − k0XΓ∗) − nk1Xk0xΓ

∗

2 + 2Mk0θ − nk0XΓ∗

]
1

M

ΦΓ
0 = −

[
k0X(2− nk0x)

M2 − 2M + 2
+

k1x(2Mk0θ − nk0XΓ∗)

M

]
1

2 + 2Mk0θ − nk0XΓ∗

Φθ
0 =

−4k0θ

2 + 2Mk0θ − nk0XΓ∗

Φθ
1 = − 2 [2k1θ − n (k0Xk1θ − k0θk1X) Γ∗]

2 + 2Mk0θ − nk0XΓ∗
.

Q.E.D.

Proof of Proposition 8. The proof is similar to that of Proposition 7. The FOC is

0 = −1

2
[1 + nc0xi ] ai + c0xixi − λi

Γi + 2βi
(Γi + βi)2

(
Ψi · ∂aiδ

)(
χ̃ − n

2
Ã
)

− γλi
4 + 2γΛ

[
n

Γi + 2βi
(Γi + βi)2

(
Ψi · ∂aiδ

)
Λ̃ − nc0xi + 2(∂aiδi) − 1

]
(A+ 2θ̄) .

It follows that

xi =
1 + nc0xi

2c0xi

ai +
λi
c0xi

Γi + 2βi
(Γi + βi)2

(
Ψi · ∂aiδ

)(
χ̃ − n

2
Ã
)

+
1

c0xi

γλi
4 + 2γΛ

[
n

Γi + 2βi
(Γi + βi)2

(
Ψi · ∂aiδ

)
Λ̃ − nc0xi + 2(∂aiδi) − 1

]
(A+ 2θ̄)

≈ [h0a + h1a(λi − λ∗)]ai + [h0X + h1X(λi − λ∗)]
(
χ̃ − n

2
Ã
)

+ [h0θ + h1θ(λi − λ∗)](A+ 2θ̄)

= [h0a + h1a(λi − λ∗)]ai +
Γ∗[h0X + h1X(λi − λ∗)]

M

(
X − n

2
A
)

+ [h0θ + h1θ(λi − λ∗)](A+ 2θ̄)

+
ϕλ[h0X + h1X(λi − λ∗)]

M2 − 2M + 2

(
Xλ − n

2
Aλ
)
,
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where

Aλ =
M∑
j=1

(λj − λ∗)aj and Xλ =
M∑
j=1

(λj − λ∗)xj ,

and we used

Ã =
M∑
j=1

Γj
B(Γj + βj)

aj ≈
Γ∗

M
A +

ϕλ

M2 − 2M + 2
AΓ

χ̃ =
M∑
j=1

Γj
B(Γj + βj)

xj ≈
Γ∗

M
X +

ϕλ

M2 − 2M + 2
Xmismatch .

Summing over i yield

Xλ = h0aA
λ

X = h0aA+ h1aA
λ + Γ∗h0X

(
X − n

2
A
)

+ Mh0θ(A+ 2θ̄) +
Mh0Xϕ

λ

M2 − 2M + 2

(
Xλ − n

2
Aλ
)
,

implying that

X =
h0a − n

2
Γ∗h0X +Mh0θ

1− Γ∗h0X

A +
2Mh0θ

1− Γ∗h0X

θ̄ +
h1a + Mh0Xϕ

λ

M2−2M+2

(
h0a − n

2

)
1− Γ∗h0X

Aλ .

Substituting into the equation for xi we obtain

xi = [h0a + h1a(λi − λ∗)]ai +
Γ∗[h0X + h1X(λi − λ∗)]

M

h0a − n
2
Γ∗h0X +Mh0θ

1− Γ∗h0X

A

− n

2

Γ∗[h0X + h1X(λi − λ∗)]
M

A + [h0θ + h1θ(λi − λ∗)]A +
(
h0a −

n

2

) ϕλ[h0X + h1X(λi − λ∗)]
M2 − 2M + 2

Aλ

+
Γ∗[h0X + h1X(λi − λ∗)]

M

h1a + Mh0Xϕ
λ

M2−2M+2

(
h0a − n

2

)
1− Γ∗h0X

Aλ

+ 2[h0θ + h1θ(λi − λ∗)]θ̄ +
2h0θΓ

∗[h0X + h1X(λi − λ∗)]
1− Γ∗h0X

θ̄ .
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Therefore,

ϕa0 = h0a

ϕA0 = h0θ +
Γ∗h0X

M

h0a − n
2
Γ∗h0X +Mh0θ

1− Γ∗h0X

− n

2

Γ∗h0X

M

= h0θ +
Γ∗h0X

M

1

1− Γ∗h0X

[
h0a + Mh0θ −

n

2

]
ϕA0,λ =

(
h0a −

n

2

) ϕλh0X

M2 − 2M + 2
+

Γ∗h0X

M

h1a + Mh0Xϕ
λ

M2−2M+2

(
h0a − n

2

)
1− Γ∗h0X

ϕθ0 = 2h0θ

[
1 +

Γ∗h0X

1− Γ∗h0X

]
=

2h0θ

1− Γ∗h0X

ϕa1 = h1a

ϕA1 = h1θ +
Γ∗h1X

M

h0a − n
2
Γ∗h0X +Mh0θ

1− Γ∗h0X

− n

2

Γ∗h1X

M

= h1θ +
Γ∗h1X

M

1

1− Γ∗h0X

[
h0a + Mh0θ −

n

2

]
ϕA1,λ =

(
h0a −

n

2

) ϕλh1X

M2 − 2M + 2
+

Γ∗h1X

M

h1a + Mh0Xϕ
λ

M2−2M+2

(
h0a − n

2

)
1− Γ∗h0X

=
1

1− Γ∗h0X

[(
h0a −

n

2

) ϕλh1X

M2 − 2M + 2
+

Γ∗h1Xh1a

M

]
ϕθ1 = 2h1θ +

2h0θΓ
∗h1X

1− Γ∗h0X

.

Q.E.D.

Lemma 13 After the D2C trading round, dealer inventories become

χi ≈ −(ϕa0 − 0.5n)λ∗αi − (ϕA0 − 0.5nγη∗0λ
∗)Mλ∗ᾱ − Mλ∗[(ϕA0 − 0.5nγη∗0λ

∗) + ϕA0,λλ
∗]α̂

+ λ∗[ϕa0 +MϕA0 + nη∗0]d + ϕθ0θ̄ − γη∗0λ
∗Θ

+ (λi − λ∗)
[
−(ϕa0 + ϕa1λ

∗ − 0.5n)αi +Mλ∗(0.5nγη∗0 − ϕA1 )ᾱ
]

+ (λi − λ∗)[(ϕa0 + nη∗0 + λ∗ϕa1 +Mλ∗ϕA1 )d− γη∗0Θ + ϕθ1θ̄] ,
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where

ᾱ =
1

M

∑
i

αi; α̂ =
1

Λ

∑
i

(λi − λ∗)αi; and η∗0 = − 1

2 + γΛ
.

Proof of Lemma 13.

χ̃i = xi −
∑
j

(δi + ηiθj,t−) = xi − 0.5nai − ηi(Θt + 0.5nA)

= ϕa0ai + ϕA0 A + ϕA0,λA
λ + ϕθ0θ̄ + (λi − λ∗)[ϕa1ai + ϕA1 A+ ϕA1,λA

λ + ϕθ1θ̄]

− 0.5nai − ηi(Θ + 0.5nA)

= (ϕa0 − 0.5n)ai + (ϕA0 − 0.5nηi)A + ϕA0,λA
λ + ϕθ0θ̄ − ηiΘ + (λi − λ∗)[ϕa1ai + ϕA1 A+ ϕθ1θ̄] .

For simplicity, we assume that the total customer inventory shocks Θt =
∑

j θj,t are i.i.d.

over time. We rerwite both ai and A in terms of mid-prices:

ai = λi(d− αi)

A =
∑
j

aj = d
∑
j

λj −
∑
j

λjαj = dΛ −
∑
j

λjαj

= Mλ∗ [d − (α̂ + ᾱ)]

Aλ =
∑
j

(λj − λ∗)aj = d
∑
j

(λj − λ∗)λj −
∑
j

(λj − λ∗)λjαj ≈ − λ∗
∑
j

(λj − λ∗)αj

= − M(λ∗)2α̂ .
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Thus,

χ̃i = (ϕa0 − 0.5n)λi(d− αi) + (ϕA0 − 0.5nηi)Mλ∗ [d − (α̂+ ᾱ)] − ϕA0,λM(λ∗)2α̂

+ ϕθ0θ̄ − ηiΘ + (λi − λ∗)[ϕa1λi(d− αi) + ϕA1 Mλ∗ [d − (α̂+ ᾱ)] + ϕθ1θ̄]

= −(ϕa0 − 0.5n)λiαi − (ϕA0 − 0.5nγλiη
∗
0)Mλ∗ᾱ − Mλ∗[(ϕA0 − 0.5nγλiη

∗
0) + ϕA0,λλ

∗]α̂

+ [(ϕa0 − 0.5n)λi + (ϕA0 − 0.5nγλiη
∗
0)Mλ∗]d + ϕθ0θ̄ − γλiη

∗
0Θ

+ (λi − λ∗)[−ϕa1λiαi − ϕA1 Mλ∗(α̂+ ᾱ) + (ϕa1λi + ϕA1 Mλ∗)d+ ϕθ1θ̄]

≈ −(ϕa0 − 0.5n)λ∗αi − (ϕA0 − 0.5nγη∗0λ
∗)Mλ∗ᾱ − Mλ∗[(ϕA0 − 0.5nγη∗0λ

∗) + ϕA0,λλ
∗]α̂

+ [(ϕa0 − 0.5n)λ∗ + (ϕA0 − 0.5nγη∗0λ
∗)Mλ∗]d + ϕθ0θ̄ − γη∗0λ

∗Θ

− (ϕa0 − 0.5n)(λi − λ∗)αi + 0.5nγη∗0(λi − λ∗)Mλ∗ᾱ

+ [(ϕa0 − 0.5n)(λi − λ∗) − 0.5nγη∗0(λi − λ∗)Mλ∗]d − γη∗0(λi − λ∗)Θ

+ (λi − λ∗)[−ϕa1λ∗αi − ϕA1 Mλ∗ᾱ+ λ∗(ϕa1 +MϕA1 )d+ ϕθ1θ̄]

≈ −(ϕa0 − 0.5n)λ∗αi − (ϕA0 − 0.5nγη∗0λ
∗)Mλ∗ᾱ − Mλ∗[(ϕA0 − 0.5nγη∗0λ

∗) + ϕA0,λλ
∗]α̂

+ [(ϕa0 − 0.5n)λ∗ + (ϕA0 − 0.5nγη∗0λ
∗)Mλ∗]d + ϕθ0θ̄ − γη∗0λ

∗Θ

+ (λi − λ∗) [−(ϕa0 − 0.5n)αi + 0.5nMγη∗0λ
∗ᾱ]

+ (λi − λ∗)[(ϕa0 − 0.5n) − 0.5nMγη∗0λ
∗]d − (λi − λ∗)γη∗0Θ

+ (λi − λ∗)[−ϕa1λ∗αi − ϕA1 Mλ∗ᾱ+ λ∗(ϕa1 +MϕA1 )d+ ϕθ1θ̄] ,

where we used the definition

ηi = − γλi
2 + γΛ

= γη∗0λi =⇒ 1 + Mγη∗0λ
∗ = − 2η∗0 .
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Thus,

χ̃i ≈ −(ϕa0 − 0.5n)λ∗αi − (ϕA0 − 0.5nγη∗0λ
∗)Mλ∗ᾱ − Mλ∗[(ϕA0 − 0.5nγη∗0λ

∗) + ϕA0,λλ
∗]α̂

+ λ∗[ϕa0 +MϕA0 + nη∗0]d + ϕθ0θ̄ − γη∗0λ
∗Θ

+ (λi − λ∗) [−(ϕa0 − 0.5n)αi + 0.5nMγη∗0λ
∗ᾱ]

+ (λi − λ∗)[(ϕa0 + nη∗0)d− γη∗0Θ]

+ (λi − λ∗)[−ϕa1λ∗αi − ϕA1 Mλ∗ᾱ+ λ∗(ϕa1 +MϕA1 )d+ ϕθ1θ̄] ,

Q.E.D.

Proof of Proposition 9. We have

PD2D = d − X̂ and X̂ = Ψ · χ̃ .

To first order,

Γi
B(Γi + βi)

≈ Γ∗

M
+

ϕλ

M2 − 2M + 2
(λi − λ∗)

M∑
j=1

Γj
B(Γj + βj)

≈ Γ∗

M∑
j=1

Γj
B(Γj + βj)

αj ≈ Γ∗ᾱ +
Mϕλλ∗

M2 − 2M + 2
α̂

M∑
j=1

Γj
B(Γj + βj)

(λj − λ∗) ≈ 0

M∑
j=1

Γj
B(Γj + βj)

αj(λj − λ∗) ≈ λ∗Γ∗α̂ .
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Thus,

Ψ · χ̃ = −(ϕa0 − 0.5n)λ∗
[
Γ∗ᾱ +

Mϕλλ∗

M2 − 2M + 2
α̂

]
− (ϕA0 − 0.5nγη∗0λ

∗)Mλ∗Γ∗ᾱ − Mλ∗Γ∗[(ϕA0 − 0.5nγη∗0λ
∗) + ϕA0,λλ

∗]α̂

+ λ∗Γ∗[ϕa0 +MϕA0 + nη∗0]d + Γ∗ϕθ0θ̄ − γη∗0λ
∗Γ∗Θ

− (ϕa0 + ϕa1λ
∗ − 0.5n)λ∗Γ∗α̂

= −λ∗Γ∗
[
ϕa0 +MϕA0 + nη∗0

]
(ᾱ+ α̂) − (λ∗)2

[
Γ∗(MϕA0,λ + ϕa1) +

Mϕλ(ϕa0 − 0.5n)

M2 − 2M + 2

]
α̂

+ λ∗Γ∗[ϕa0 +MϕA0 + nη∗0]d + Γ∗ϕθ0θ̄ − γη∗0λ
∗Γ∗Θ .

Q.E.D.
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B Regression Tables: Main Results
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Table 2: Forecasting FX rates: Ten Seconds Ahead.— The table report estimates for
the regression

∆pD2D
t+`,` = a0 + a1∆ᾱt,` + a2∆α̂t,` + controlst

where ∆Xt,` = Xt − Xt−` and ` = 10s. The dependent variaable pD2D
t is the

log mid-price for the “EUR/USD” exchange rate, from the EBS trading platform. The
independent variable ᾱt is the average mid-price from the price schedules for the currency
pair “EUR/USD” submitted to Swissquote by a set of large dealers. The independent
variable α̂t is our novel measure of liquidity missmatch in the two-tiered FX market. The
set of control variables are: (1) ProxyLiqShock, a proxy for the customers’ liquidity demand
that is the net of all seller-initiated orders and buyer-initiated orders from the Swissquote’s
clients (i.e., the net selling pressure); (2) OFlow d2d Vol, the aggregate daily net order flow;
(3) OFlow d2d Bin, the aggregate daily binary Buy and Sell executed, where a buy (Sell)
order is order marked as +1 (−1). (3) OF Vol 1h, the aggregate (signed) order flow in the
D2D market over the previous 1 hour; (4) OF Vol 24h, the aggregate (signed) order flow in
the D2D market over the previous 24 hours. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

∆pD2D
t+`,`

∆ᾱt,` 0.024∗∗∗ 0.024∗∗∗ 0.024∗∗∗ 0.024∗∗∗ 0.024∗∗∗ 0.024∗∗∗ 0.024∗∗∗ 0.024∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

∆α̂t,` 0.029∗∗∗ 0.029∗∗∗ 0.029∗∗∗ 0.029∗∗∗ 0.029∗∗∗ 0.029∗∗∗ 0.030∗∗∗ 0.029∗∗∗

(0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

ProxyLiqShock −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

OFlow d2d Volt 0.000 0.000

(0.000) (0.000)

OFlow d2d Bint 0.000 0.000

(0.000) (0.000)

OF Vol 1ht −0.00000

(0.00000)

OF Vol 24ht 0.000

(0.000)

Constant 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 3: Forecasting FX Spread: Ten Seconds Ahead.— The table report estimates
for the regression

∆Spread D2Dt+`,` = a0 + a1∆Spread D2Ct,` + a2STD Spread D2Ct + controlst ,

∆Xt,` = Xt+` − Xt and ` = 10s. The variaable Spread D2D is the bid-ask spread for
the “EUR/USD” exchange rate, from the EBS trading platform. The variable Spread D2C
is the mean spread from the price schedules for the currency pair “EUR/USD” submitted
to Swissquote by a set of large dealers while the variable STD Spread D2C is the standard
deviation of bid-ask spread from the same price schedules. The set of control variables
are: (1) ProxyLiqShock, a proxy for the customers’ liquidity demand that is the net
of all seller-initiated orders and buyer-initiated orders from the Swissquote’s clients (i.e.,
the net selling pressure); (2) OFlow d2d Vol, the aggregate daily net order flow; (3)
OFlow d2d BinHeteroscedasticity and autocorrelation robust standard errors are shown in
parenthesis.

∆pD2D
t+`,`

∆Spread D2Ct,` −0.0002∗∗∗ −0.0002∗∗∗ −0.0002∗∗∗ −0.0002∗∗∗ −0.0002∗∗∗ −0.0002∗∗∗

(0.00004) (0.00004) (0.00004) (0.00003) (0.00003) (0.00003)

STD Spread D2Ct −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

OFlow d2d Volt −0.000 −0.000

(0.000) (0.000)

OFlow d2d Bint 0.000 0.000

(0.000) (0.000)

ProxyLiqShockt 0.000 0.000 0.000

(0.000) (0.000) (0.000)

Constant −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



C Regression Tables: Additional Lags
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Table 4: Forecasting FX rates: One Second Ahead.— The table report estimates for
the regression

∆pD2D
t+`,` = a0 + a1∆ᾱt,` + a2∆α̂t,` + controlst

where ∆Xt,` = Xt − Xt−` and ` = 1s. The dependent variaable pD2D
t is the log mid-price for

the “EUR/USD” exchange rate, from the EBS trading platform. The independent variable
ᾱt is the average mid-price from the price schedules for the currency pair “EUR/USD”
submitted to Swissquote by a set of large dealers. The independent variable α̂t is our novel
measure of liquidity missmatch in the two-tiered FX market. The set of control variables
are: (1) ProxyLiqShock, a proxy for the customers’ liquidity demand that is the net of all
seller-initiated orders and buyer-initiated orders from the Swissquote’s clients (i.e., the net
selling pressure); (2) OFlow d2d Vol, the aggregate daily net order flow; (3) OFlow d2d Bin,
the aggregate daily binary Buy and Sell executed, where a buy (Sell) order is order marked
as +1 (−1). (3) OF Vol 1h, the aggregate (signed) order flow in the D2D market over the
previous 1 hour; (4) OF Vol 24h, the aggregate (signed) order flow in the D2D market over
the previous 24 hours. Heteroscedasticity and autocorrelation robust standard errors are
shown in parenthesis.

∆pD2D
t+`,`

∆ᾱt,` 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

∆ᾱt,` 0.00000∗∗∗ 0.00000∗∗∗ 0.00000∗∗∗ 0.00000∗∗∗ 0.00000∗∗∗ 0.00000∗∗∗ 0.00000∗∗∗ 0.00000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ProxyLiqShockt −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

OFlow d2d Volt 0.000 0.000

(0.000) (0.000)

OFlow d2d Bint 0.000 0.000

(0.000) (0.000)

OF Vol 1ht −0.000

(0.000)

OF Vol 24ht 0.000

(0.000)

Constant 0.000∗∗ 0.000∗ 0.000 0.000∗ 0.000 0.000∗ 0.000∗ 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 5: Forecasting FX rates: Three Seconds Ahead.— The table report estimates
for the regression

∆pD2D
t+`,` = a0 + a1∆ᾱt,` + a2∆α̂t,` + controlst

where ∆Xt,` = Xt − Xt−` and ` = 3s. The dependent variaable pD2D
t is the log mid-price for

the “EUR/USD” exchange rate, from the EBS trading platform. The independent variable
ᾱt is the average mid-price from the price schedules for the currency pair “EUR/USD”
submitted to Swissquote by a set of large dealers. The independent variable α̂t is our novel
measure of liquidity missmatch in the two-tiered FX market. The set of control variables
are: (1) ProxyLiqShock, a proxy for the customers’ liquidity demand that is the net of all
seller-initiated orders and buyer-initiated orders from the Swissquote’s clients (i.e., the net
selling pressure); (2) OFlow d2d Vol, the aggregate daily net order flow; (3) OFlow d2d Bin,
the aggregate daily binary Buy and Sell executed, where a buy (Sell) order is order marked
as +1 (−1). (3) OF Vol 1h, the aggregate (signed) order flow in the D2D market over the
previous 1 hour; (4) OF Vol 24h, the aggregate (signed) order flow in the D2D market over
the previous 24 hours. Heteroscedasticity and autocorrelation robust standard errors are
shown in parenthesis.

∆pD2D
t+`,`

∆ᾱt,` 0.00000∗∗∗ 0.00000∗∗∗ 0.00000∗∗∗ 0.00000∗∗∗ 0.00000∗∗∗ 0.00000∗∗∗ 0.00000∗∗∗ 0.00000∗∗∗

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

∆α̂t,` 0.00001∗∗ 0.00001∗ 0.00001∗∗ 0.00001∗∗ 0.00001∗ 0.00001∗ 0.00001∗ 0.00001∗

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

ProxyLiqShockt −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

OFlow d2d Volt −0.000 −0.000

(0.000) (0.000)

OFlow d2d Bint −0.000 −0.000

(0.000) (0.000)

OF Vol 1ht −0.000∗∗∗

(0.000)

OF Vol 24ht −0.000

(0.000)

Constant 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 6: Forecasting FX rates: Five Seconds Ahead.— The table report estimates
for the regression

∆pD2D
t+`,` = a0 + a1∆ᾱt,` + a2∆α̂t,` + controlst

where ∆Xt,` = Xt − Xt−` and ` = 5s. The dependent variaable pD2D
t is the log mid-price for

the “EUR/USD” exchange rate, from the EBS trading platform. The independent variable
ᾱt is the average mid-price from the price schedules for the currency pair “EUR/USD”
submitted to Swissquote by a set of large dealers. The independent variable α̂t is our novel
measure of liquidity missmatch in the two-tiered FX market. The set of control variables
are: (1) ProxyLiqShock, a proxy for the customers’ liquidity demand that is the net of all
seller-initiated orders and buyer-initiated orders from the Swissquote’s clients (i.e., the net
selling pressure); (2) OFlow d2d Vol, the aggregate daily net order flow; (3) OFlow d2d Bin,
the aggregate daily binary Buy and Sell executed, where a buy (Sell) order is order marked
as +1 (−1). (3) OF Vol 1h, the aggregate (signed) order flow in the D2D market over the
previous 1 hour; (4) OF Vol 24h, the aggregate (signed) order flow in the D2D market over
the previous 24 hours. Heteroscedasticity and autocorrelation robust standard errors are
shown in parenthesis.

∆pD2D
t+`,`

∆ᾱt,` 0.00000∗∗∗ 0.00000∗∗∗ 0.00000∗∗∗ 0.00000∗∗∗ 0.00000∗∗∗ 0.00000∗∗∗ 0.00000∗∗∗ 0.00000∗∗∗

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

∆α̂t,` 0.00001∗∗ 0.00001∗∗ 0.00001∗∗∗ 0.00001∗∗∗ 0.00001∗∗ 0.00001∗∗ 0.00001∗∗ 0.00001∗∗

(0.00001) (0.00001) (0.00001) (0.00001) (0.00001) (0.00001) (0.00001) (0.00001)

ProxyLiqShockt −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

OFlow d2d Volt 0.000 0.000

(0.000) (0.000)

OFlow d2d Bint −0.000 0.000

(0.000) (0.000)

OF Vol 1ht −0.000∗∗∗

(0.000)

OF Vol 24ht 0.000∗∗∗

(0.000)

Constant 0.000 0.000 0.000 0.000 0.000 0.000 0.000 −0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 7: Forecasting FX rates: Fifteen Seconds Ahead.— The table report estimates
for the regression

∆pD2D
t+`,` = a0 + a1∆ᾱt,` + a2∆α̂t,` + controlst

where ∆Xt,` = Xt − Xt−` and ` = 15s. The dependent variaable pD2D
t is the

log mid-price for the “EUR/USD” exchange rate, from the EBS trading platform. The
independent variable ᾱt is the average mid-price from the price schedules for the currency
pair “EUR/USD” submitted to Swissquote by a set of large dealers. The independent
variable α̂t is our novel measure of liquidity missmatch in the two-tiered FX market. The
set of control variables are: (1) ProxyLiqShock, a proxy for the customers’ liquidity demand
that is the net of all seller-initiated orders and buyer-initiated orders from the Swissquote’s
clients (i.e., the net selling pressure); (2) OFlow d2d Vol, the aggregate daily net order flow;
(3) OFlow d2d Bin, the aggregate daily binary Buy and Sell executed, where a buy (Sell)
order is order marked as +1 (−1). (3) OF Vol 1h, the aggregate (signed) order flow in the
D2D market over the previous 1 hour; (4) OF Vol 24h, the aggregate (signed) order flow in
the D2D market over the previous 24 hours. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

∆pD2D
t+`,`

∆ᾱt,` 0.015∗∗∗ 0.015∗∗∗ 0.015∗∗∗ 0.015∗∗∗ 0.015∗∗∗ 0.015∗∗∗ 0.016∗∗∗ 0.015∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

∆α̂t,` 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.013∗∗∗ 0.012∗∗∗

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

ProxyLiqShockt −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

OFlow d2d Volt −0.000 −0.000

(0.000) (0.000)

OFlow d2d Bint −0.000 −0.000

(0.000) (0.000)

OF Vol 1ht −0.00000

(0.00000)

OF Vol 24ht −0.000

(0.000)

Constant 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 8: Forecasting FX rates: Twenty Seconds Ahead.— The table report estimates
for the regression

∆pD2D
t+`,` = a0 + a1∆ᾱt,` + a2∆α̂t,` + controlst

where ∆Xt,` = Xt − Xt−` and ` = 20s. The dependent variaable pD2D
t is the

log mid-price for the “EUR/USD” exchange rate, from the EBS trading platform. The
independent variable ᾱt is the average mid-price from the price schedules for the currency
pair “EUR/USD” submitted to Swissquote by a set of large dealers. The independent
variable α̂t is our novel measure of liquidity missmatch in the two-tiered FX market. The
set of control variables are: (1) ProxyLiqShock, a proxy for the customers’ liquidity demand
that is the net of all seller-initiated orders and buyer-initiated orders from the Swissquote’s
clients (i.e., the net selling pressure); (2) OFlow d2d Vol, the aggregate daily net order flow;
(3) OFlow d2d Bin, the aggregate daily binary Buy and Sell executed, where a buy (Sell)
order is order marked as +1 (−1). (3) OF Vol 1h, the aggregate (signed) order flow in the
D2D market over the previous 1 hour; (4) OF Vol 24h, the aggregate (signed) order flow in
the D2D market over the previous 24 hours. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

∆pD2D
t+`,`

∆ᾱt,` 0.014∗∗∗ 0.014∗∗∗ 0.014∗∗∗ 0.014∗∗∗ 0.014∗∗∗ 0.014∗∗∗ 0.014∗∗∗ 0.014∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

∆α̂t,` 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

ProxyLiqShockt −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

OFlow d2d Volt 0.000 0.000

(0.000) (0.000)

OFlow d2d Bint 0.000 0.000

(0.000) (0.000)

OF Vol 1ht −0.00000

(0.00000)

OF Vol 24ht 0.000

(0.000)

Constant 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 9: Forecasting FX rates: Thirty Seconds Ahead.— The table report estimates
for the regression

∆pD2D
t+`,` = a0 + a1∆ᾱt,` + a2∆α̂t,` + controlst

where ∆Xt,` = Xt − Xt−` and ` = 30s. The dependent variaable pD2D
t is the

log mid-price for the “EUR/USD” exchange rate, from the EBS trading platform. The
independent variable ᾱt is the average mid-price from the price schedules for the currency
pair “EUR/USD” submitted to Swissquote by a set of large dealers. The independent
variable α̂t is our novel measure of liquidity missmatch in the two-tiered FX market. The
set of control variables are: (1) ProxyLiqShock, a proxy for the customers’ liquidity demand
that is the net of all seller-initiated orders and buyer-initiated orders from the Swissquote’s
clients (i.e., the net selling pressure); (2) OFlow d2d Vol, the aggregate daily net order flow;
(3) OFlow d2d Bin, the aggregate daily binary Buy and Sell executed, where a buy (Sell)
order is order marked as +1 (−1). (3) OF Vol 1h, the aggregate (signed) order flow in the
D2D market over the previous 1 hour; (4) OF Vol 24h, the aggregate (signed) order flow in
the D2D market over the previous 24 hours. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

∆pD2D
t+`,`

∆ᾱt,` 0.005∗ 0.005∗ 0.005∗ 0.005∗ 0.005∗ 0.005∗ 0.005∗ 0.005∗

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

∆α̂t,` 0.011∗∗ 0.011∗∗ 0.011∗∗ 0.011∗∗ 0.011∗∗ 0.011∗∗ 0.011∗∗ 0.011∗∗

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

ProxyLiqShockt −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

OFlow d2d Volt 0.000 0.000

(0.000) (0.000)

OFlow d2d Bint 0.000 0.000

(0.000) (0.000)

OF Vol 1ht 0.000

(0.00000)

OF Vol 24ht 0.000

(0.000)

Constant −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 10: Forecasting FX rates: Forty Seconds Ahead.— The table report estimates
for the regression

∆pD2D
t+`,` = a0 + a1∆ᾱt,` + a2∆α̂t,` + controlst

where ∆Xt,` = Xt − Xt−` and ` = 40s. The dependent variaable pD2D
t is the

log mid-price for the “EUR/USD” exchange rate, from the EBS trading platform. The
independent variable ᾱt is the average mid-price from the price schedules for the currency
pair “EUR/USD” submitted to Swissquote by a set of large dealers. The independent
variable α̂t is our novel measure of liquidity missmatch in the two-tiered FX market. The
set of control variables are: (1) ProxyLiqShock, a proxy for the customers’ liquidity demand
that is the net of all seller-initiated orders and buyer-initiated orders from the Swissquote’s
clients (i.e., the net selling pressure); (2) OFlow d2d Vol, the aggregate daily net order flow;
(3) OFlow d2d Bin, the aggregate daily binary Buy and Sell executed, where a buy (Sell)
order is order marked as +1 (−1). (3) OF Vol 1h, the aggregate (signed) order flow in the
D2D market over the previous 1 hour; (4) OF Vol 24h, the aggregate (signed) order flow in
the D2D market over the previous 24 hours. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

∆pD2D
t+`,`

∆ᾱt,` −0.0001 0.0001 −0.00004 −0.00005 0.0001 0.0001 −0.0001 0.00005

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

∆α̂t,` −0.014 −0.014 −0.014 −0.014 −0.014 −0.014 −0.014 −0.014

(0.017) (0.017) (0.017) (0.017) (0.017) (0.017) (0.017) (0.017)

ProxyLiqShockt −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

OFlow d2d Volt 0.000 0.000

(0.000) (0.000)

OFlow d2d Bint 0.000 0.000

(0.000) (0.000)

OF Vol 1ht 0.00000

(0.00000)

OF Vol 24ht 0.000

(0.000)

Constant 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 11: Forecasting FX rates: Fourty Five Seconds Ahead.— The table report
estimates for the regression

∆pD2D
t+`,` = a0 + a1∆ᾱt,` + a2∆α̂t,` + controlst

where ∆Xt,` = Xt+` − Xt and ` = 45s. The dependent variaable pD2D
t is the

log mid-price for the “EUR/USD” exchange rate, from the EBS trading platform. The
independent variable ᾱt is the average mid-price from the price schedules for the currency
pair “EUR/USD” submitted to Swissquote by a set of large dealers. The independent
variable α̂t is our novel measure of liquidity missmatch in the two-tiered FX market. The
set of control variables are: (1) ProxyLiqShock, a proxy for the customers’ liquidity demand
that is the net of all seller-initiated orders and buyer-initiated orders from the Swissquote’s
clients (i.e., the net selling pressure); (2) OFlow d2d Vol, the aggregate daily net order flow;
(3) OFlow d2d Bin, the aggregate daily binary Buy and Sell executed, where a buy (Sell)
order is order marked as +1 (−1). (3) OF Vol 1h, the aggregate (signed) order flow in the
D2D market over the previous 1 hour; (4) OF Vol 24h, the aggregate (signed) order flow in
the D2D market over the previous 24 hours. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

∆pD2D
t+1,`

∆ᾱt,` −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001 −0.001

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

∆α̂t,` −0.009 −0.009 −0.009 −0.009 −0.009 −0.009 −0.009 −0.009

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

ProxyLiqShockt −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

OFlow d2d Volt 0.000 0.000

(0.000) (0.000)

OFlow d2d Bint 0.000 0.000

(0.000) (0.000)

OF Vol 1ht 0.00000

(0.00000)

OF Vol 24t 0.000

(0.000)

Constant 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 12: Forecasting FX rates: Fifty Seconds Ahead.— The table report estimates
for the regression

∆pD2D
t+`,` = a0 + a1∆ᾱt,` + a2∆α̂t,` + controlst

where ∆Xt,` = Xt − Xt−` and ` = 50s. The dependent variaable pD2D
t is the

log mid-price for the “EUR/USD” exchange rate, from the EBS trading platform. The
independent variable ᾱt is the average mid-price from the price schedules for the currency
pair “EUR/USD” submitted to Swissquote by a set of large dealers. The independent
variable α̂t is our novel measure of liquidity missmatch in the two-tiered FX market. The
set of control variables are: (1) ProxyLiqShock, a proxy for the customers’ liquidity demand
that is the net of all seller-initiated orders and buyer-initiated orders from the Swissquote’s
clients (i.e., the net selling pressure); (2) OFlow d2d Vol, the aggregate daily net order flow;
(3) OFlow d2d Bin, the aggregate daily binary Buy and Sell executed, where a buy (Sell)
order is order marked as +1 (−1). (3) OF Vol 1h, the aggregate (signed) order flow in the
D2D market over the previous 1 hour; (4) OF Vol 24h, the aggregate (signed) order flow in
the D2D market over the previous 24 hours. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

∆pD2D
t+`,`

∆ᾱt,` −0.004 −0.004 −0.004 −0.004 −0.004 −0.004 −0.004 −0.004

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

∆α̂t,` −0.008 −0.008 −0.008 −0.008 −0.008 −0.008 −0.008 −0.008

(0.010) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)

ProxyLiqShockt −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

OFlow d2d Volt 0.000 0.000

(0.000) (0.000)

OFlow d2d Bint 0.000 0.000

(0.000) (0.000)

OF Vol 1ht 0.00000

(0.00000)

OF Vol 24ht 0.000

(0.000)

Constant 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 13: Forecasting FX rates: Sixty Seconds Ahead.— The table report estimates
for the regression

∆pD2D
t+`,` = a0 + a1∆ᾱt,` + a2∆α̂t,` + controlst

where ∆Xt,` = Xt+` − Xt and ` = 60s. The dependent variaable pD2D
t is the

log mid-price for the “EUR/USD” exchange rate, from the EBS trading platform. The
independent variable ᾱt is the average mid-price from the price schedules for the currency
pair “EUR/USD” submitted to Swissquote by a set of large dealers. The independent
variable α̂t is our novel measure of liquidity missmatch in the two-tiered FX market. The
set of control variables are: (1) ProxyLiqShock, a proxy for the customers’ liquidity demand
that is the net of all seller-initiated orders and buyer-initiated orders from the Swissquote’s
clients (i.e., the net selling pressure); (2) OFlow d2d Vol, the aggregate daily net order flow;
(3) OFlow d2d Bin, the aggregate daily binary Buy and Sell executed, where a buy (Sell)
order is order marked as +1 (−1). (3) OF Vol 1h, the aggregate (signed) order flow in the
D2D market over the previous 1 hour; (4) OF Vol 24h, the aggregate (signed) order flow in
the D2D market over the previous 24 hours. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

∆pD2D
t+`,`

∆ᾱt,` −0.006 −0.006 −0.006 −0.006 −0.006 −0.006 −0.006 −0.006

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

∆α̂t,` −0.016 −0.016 −0.016 −0.016 −0.016 −0.016 −0.016 −0.016

(0.013) (0.013) (0.013) (0.013) (0.013) (0.013) (0.013) (0.013)

ProxyLiqShockt −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

LOFlow d2d Volt 0.000 0.000

(0.000) (0.000)

OFlow d2d Bint 0.000 0.000

(0.000) (0.000)

OF Vol 1ht 0.00000

(0.00000)

OF Vol 24ht 0.000

(0.000)

Constant 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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