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Research summary : This article uses Exponential Random Graph Models (ERGMs) to advance
strategic management research, focusing on an application to board interlock network tie
formation. Networks form as the result of actor attributes as well as through the influence
of existing ties. Conventional regression models require assumptions of independence between
observations, and fail to incorporate endogenous structural effects of the observed network.
ERGMs represent a methodological innovation for network formation research given their
ability to model actor attributes along with endogenous structural processes. We illustrate these
advantages by modeling board interlock formation among Fortune 100 firms. We also demonstrate
how ERGMs offer significant opportunities to extend existing strategy research and open new
pathways in multiparty alliances, microfoundations of interorganizational network formation, and
multiplexity of ties among actors.

Managerial summary: Social networks are increasingly important in the business world, not only
between individuals but also between organizations. Firms can obtain information, resources, and
status through their external network connections, and understanding how these outside ties form
is an important goal of strategy research. Our paper helps advance this effort by introducing a new
tool for social network analysis, Exponential Random Graph Models (ERGMs) to the management
and strategy fields. We provide an example of this method, demonstrating how social network ties
form between companies when they hire common directors to their boards. Executives can benefit
from this research through a greater understanding of how corporate relationships are built with
allies as well as among competitors. Copyright © 2015 John Wiley & Sons, Ltd.

INTRODUCTION

The ubiquity of networks among industries, firms,
and individuals has attracted significant research
attention as evidenced by the sheer volume of
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studies that draw on network concepts and methods
(Borgatti et al., 2009). One of the key themes to
emerge from organizational research on social net-
works is that firms are embedded in sets of rela-
tionships and interactions (Granovetter, 1985) that
determine both their actions and outcomes (e.g.,
Ahuja, Polidoro, and Mitchell, 2009; Stern, Duk-
erich, and Zajac, 2014). Prior research has exam-
ined numerous properties of networks, including
structural cohesion (Moody and White, 2003) and
small-worldness (Uzzi and Spiro, 2005; Watts,
1999) as well as what kind of ties are likely to form
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between actors and which actors will become more
central (e.g., Burkhardt and Brass, 1990; Shipilov
and Li, 2012). At the same time, a better under-
standing of how and why organizational networks
emerge is critically important to determine how dif-
ferent network structures offer distinctive benefits
or constraints to firms embedded in them (Ahuja,
Soda, and Zaheer, 2012; Salancik, 1995; Stuart and
Sorenson, 2007).

Network formation may be driven by multiple
interdependent social processes acting simulta-
neously (Hedström and Swedberg, 1998; Lusher,
Koskinen, and Robins, 2013). Networks may
emerge through a process whereby actors seek part-
ners with specific characteristics (e.g., homophily)
or in response to opportunities made available by
their partners’ reciprocal behaviors (Blau, 1964;
Park and Luo, 2001), leading to changes in the
network structure (Contractor, Wasserman, and
Faust, 2006). Alternatively, network ties may
result from locally emergent structures (Gulati
and Gargiulo, 1999; Lusher et al., 2013; Zaheer
and Soda, 2009), in which relationships among
actors are influenced by the presence (or absence)
of other ties in the network. For example, in the
context of the global cellular phone industry,
Google’s choice to partner with Samsung and HTC
around the Android operating system and initially
promote it through the Verizon carrier network in
the United States was strongly influenced by the
existing relationship that Apple had formed with
AT&T. Google’s decision illustrates an endogenous
network structural effect—the choice to form
network ties with Samsung, HTC, and Verizon
extends beyond simple considerations of their char-
acteristics and involves a calculated response to the
ties already formed by AT&T. Observed network
structure may thus result from the combination of
distinct, simultaneous processes that may be inter-
dependent and structurally emergent (Lusher et al.,
2013) and co-evolve in a complex manner (Stuart
and Sorenson, 2007; Zaheer and Soda, 2009).

Prior strategy research has rarely examined the
complex combinations of processes that simultane-
ously shape the structural characteristics of a given
network. Traditional network analysis uses regres-
sion methodologies that are based on the assump-
tion that tie formation between two actors is inde-
pendent of the other ties and actors in the network.
However, this assumption can be problematic for
many networks, in which new tie formation is
an interdependent process influenced by both the

characteristics of the actors and of their existing
ties (Ahuja et al., 2012; Contractor et al., 2006;
Provan, Fish, and Sydow, 2007). Strategy network
researchers often address this problem by using
matched pair samples, rare events methods, or
other advanced techniques in random effect logis-
tic regression models. However, these approaches
offer only a partial solution. Moreover, conventional
statistical methodologies are unable to account for
the endogenous structural effects that the existing
relationships between two firms have on the forma-
tion of ties to a third firm (Contractor et al., 2006).
In the example of the global cellular phone indus-
try, existing relationships among Google, HTC, and
Samsung are likely to influence Microsoft’s sub-
sequent choice to partner with Nokia. As a result,
without modeling such endogenous structural pro-
cesses, researchers run the risk of inappropriately
attributing observed network tie formation to firm-
or dyad-specific characteristics (e.g., characteristics
of Microsoft or Nokia in our previous example),
although such effects may be confounded by under-
lying interdependent structural processes (e.g., the
existing relationships among Google, HTC, and
Samsung).

The goal of this study is to highlight a rela-
tively new analytical approach that allows scholars
to examine multiple interdependent social processes
involved in network formation. We focus on a class
of social network methodologies called Exponen-
tial Random Graph Models (ERGMs) to demon-
strate how they permit better specification of the
processes underlying network formation (Frank
and Strauss, 1986; Pattison and Wasserman, 1999;
Snijders et al., 2006). Broadly stated, ERGM anal-
ysis examines tie formation at the network level,
accounting for potential cross-dependencies, emer-
gent network structures (such as consortia or clus-
ters of allied firms within an industry), and other
effects that cannot be addressed through conven-
tional approaches, which focus primarily on dyadic
relationships. Thus, while ERGMs can model many
of the co-variates included in traditional regres-
sions, they provide additional insights that increase
our understanding of how network structures form.
In the example of the global cellular industry,
ERGMs could provide insight into the likelihood
that any two firms will form a tie, given the existing
ties between other firms in the industry.

Currently, only a small number of organizational
studies have utilized ERGMs (e.g., Faraj and John-
son, 2011; Lomi et al., 2014). In this article, we
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extend this research and demonstrate how ERGMs
can be effectively employed for a much broader set
of research questions to study strategy network phe-
nomena. We suggest that ERGMs can be used to
explicitly capture the effects of endogenous local
structures, and more generally, to understand the
antecedents and mechanisms involved in network
formation. Broadly stated, this category of research
can be expressed through two questions: (1) How do
observed network structures emerge, and (2) What
are the underlying social processes that lead to the
emergence of these observed structures? With their
distinctive advantages, ERGMs not only extend
prior research, but also open up new research oppor-
tunities to enhance our understanding of strategy
topics such as multipartner alliances, microfoun-
dations of interorganizational network formation,
and multiplexity (multiple types of ties) in social
relationships.

To demonstrate the benefits of ERGMs, we pro-
vide an example examining board interlocks among
Fortune 100 firms and develop models to illustrate
the comparison of traditional logistic regression
methodologies to ERGM techniques. Prior research
has examined different firm- and dyad-specific fac-
tors of interlock tie formation, yet few studies exam-
ine endogenous structural processes underlying the
formation of board interlock networks (Harrigan
and Bond, 2013). Thus, we first examine whether
there are any structural processes that shape the
board interlock network. We also test whether the
influence of firm-, dyad-specific factors examined
in prior research persists after explicitly account-
ing for these structures. Our results show that
endogenous structural processes such as reciprocity
(“returning the favor” by exchanging board inter-
lock invitations) and triad closure (the greater like-
lihood of a tie forming between two actors when
each is already tied to a third actor) play a significant
role in shaping this network. These results provide
insights not offered by other regression techniques
and indicate that interlock formation may partially
stem from broader social phenomena. At the same
time, when we control for local network structural
effects using ERGMs, some of the firm-specific
characteristics that have most often been studied in
the past using conventional techniques prove to be
less consequential. For example, prior research has
produced inconsistent results regarding the relation-
ship between profitability and interlocks (Mizruchi,
1996). Our findings help clarify this issue, revealing
little evidence that directors of large or profitable

firms are more likely to be invited for a directorship
at other firms when network structural effects are
taken into consideration. Our application shows that
the use of ERGMs provide not only rigorous empir-
ical evidence for advancing scientific research, but
also opportunities for further theorizing the social
embeddedness view of board interlock formation as
suggested in prior research (Withers, Hillman, and
Cannella, 2012). Furthermore, we offer potential
extensions of existing strategy research that could
be made using ERGMs in domains such as alliances
among multiple firms, microfoundations of interor-
ganizational network formation, and different types
of concurrent ties among actors.

NETWORK FORMATION

Current approaches in strategy research

Existing research in the strategy area has focused
on numerous actor and dyadic characteristics that
influence tie formation between organizations. At
the actor (firm) level, a variety of firm-specific char-
acteristics such as technical capability or organiza-
tional reputation have been shown to be important
predictors of a firm’s propensity to form ties with
other firms, for example through alliances (e.g.,
Ahuja, 2000; Gu and Lu, 2013). In a directed net-
work, sender’s and receiver’s characteristics may
influence the likelihood of a tie being formed.

Existing research has also illustrated how the
observed network structure may be driven by char-
acteristics of the dyad, showing how a relational
attribute between two parties can influence the for-
mation of ties. As an illustration, homophily sug-
gests that firms with similar characteristics are more
likely to have ties with one another than with
other firms (McPherson, Smith-Lovin, and Cook,
2001). However, homophily may sometimes limit
the benefits of connection in terms of information
or resources available in the network; thus, actors
may partner with others who are different from
them. For example, past research has shown how
dyad-specific characteristics such as differences or
similarities in firms’ resource endowments or their
relative position with respect to markets, technolo-
gies, or geographic location are important factors
influencing tie formation (Diestre and Rajagopalan,
2012; Rothaermel and Boeker, 2008). Finally, net-
work ties emerge as a result of other types of
shared ties between actors, that is, multiplexity. For
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(a) Reciprocity (b) Popularity (c) Activity (e) Brokerage(d) Triad closure

Figure 1. Different types of network structures and associated endogenous processes

example, the presence of collaborative R&D rela-
tionships between firms may subsequently influ-
ence the formation of different kinds of ties such as
customer-buyer relationships (Powell, Koput, and
Smith-Doerr, 1996; Shipilov and Li, 2012). Sim-
ilarly, characteristics of interlocking ties between
individual board members influence subsequent
alliance formation between their affiliated organi-
zations (Gulati and Westphal, 1999).

Endogenous structural processes

While network formation is influenced by
firm-specific and dyad-specific characteristics
such as those highlighted above, networks can also
emerge through broader social processes such as
endogenous effects driven by the internal processes
of the focal network (Lusher and Robins, 2013;
Robins, 2009). For example, individual actors
may act separately from each other without any
knowledge of or intention to shape the broader
network while still being influenced by each other’s
simultaneous actions (Gulati and Gargiulo, 1999;
Uzzi and Spiro, 2005; Watts, 1999). In such cases,
network ties are the result of endogenous processes
influenced by existing network ties rather than
as a result of actor attributes or other exogenous
factors. Scholars have suggested five broad types
of endogenous structural processes that influence
network formation (Lusher and Robins, 2013), as
illustrated in Figure 1.

Reciprocity (a) is the most basic, yet one of
the most important, tendencies in social interac-
tions (Blau, 1964). It explains tie formation through
“returning the favor,” reciprocating an earlier inter-
action with a network actor. The structure of the
network can also be influenced by the number and
direction of an actor’s ties. Popularity (b) illus-
trates the process by which already-popular actors
may become even more popular, analogous to the
well-known “Matthew effect” in social science

(Barabási and Albert, 1999; Merton, 1968), often
described as “the rich get richer.” For example,
in interorganizational networks, firms with more
extensive alliance ties are more likely to engage
in future alliances, subsequently influencing their
visibility and attractiveness as a potential partner
(Podolny, 1993; Podolny and Stuart, 1995). Ties
may also more likely be generated by actors that are
simply very active in seeking new network connec-
tions, represented as Activity (c) in Figure 1. The
network patterns associated with Popularity (b) and
Activity (c) are often called “star” terms because of
their star-like structures; specifically, “in-two-star”
describes popularity with two incoming ties toward
the central node, and “out-two-star” refers to activ-
ity with two outgoing ties from the central node
in a directed network. In an undirected network,
there is no need to differentiate the direction, and we
would refer only to a general “two-star” term. (Note
that there can be multiple ties outgoing/incoming
to the central node; we depict only the simplest
forms for purpose of illustration.) In network terms,
a triad represents the structure of ties between any
set of three actors, with Triad Closure (d) indicat-
ing that two actors are likely to form a tie if they
are each tied to a separate common actor, creating a
triangle connecting all three actors (Wasserman and
Faust, 1994). “A friend of my friend is my friend”
is an intuitive example of triad closure, which is
also referred to as the transitive influence on the
formation of a tie between unconnected actors.
Research suggests that firms may engage in triad
closure to obtain resources from multiple collabo-
ration partners to counter the move of a competitor
or to protect their own interests in an interorganiza-
tional network (Gomes-Cassares, 1994; Madhavan,
Gnyawali, and He, 2004). Finally, ties may occur by
the network process of Brokerage (e) where an actor
connects others who are not directly connected.
There are particular advantages that brokers enjoy,
as Burt (1992) discusses in terms of the power and
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influence obtained by actors in a brokerage position,
shown as the central node of Figure 1(e).

Network formation is the result of numerous
processes that interact and operate simultaneously
(Contractor et al., 2006; Hedström and Swedberg,
1998; Lusher et al., 2013). Strategy research on
networks and ties has largely focused on how a
firm’s characteristics or dyadic-specific attributes
influence tie formation. More complex, endogenous
structural effects such as reciprocity, triad closure
and brokerage have rarely been empirically inves-
tigated in a systematic fashion, although the notion
that firms’ decisions to create ties are influenced by
others’ behaviors is a central premise of network
research. This omission has important implications
for research on network formation. Failure to
account for these endogenous structures may result
in model misspecification, attributing significant
effects to firm- or dyad-specific characteristics
that may be confounded with structural processes
independently driving the network (Cranmer and
Desmarais, 2011; Goodreau, Kitts, and Morris,
2009; Harrigan and Bond, 2013). In contrast,
properly accounting for these structural effects may
aid theory development, allowing us to identify
combinations of social processes underlying the
emergence of network structures (Contractor et al.,
2006). In the next section, we discuss why con-
ventional regression models may be an inadequate
tool for network formation research and introduce
recent methodological advancements, ERGMs, as
a better alternative.

NETWORK METHODOLOGIES

Conventional regression methodology
for network formation research

Past network research in strategy has generally
employed regression models such as logit or pro-
bit to study network formation among firms, with
a focus on testing the effect of firm or dyadic
co-variates (e.g., technical capability, resource com-
plementarity) or some network characteristics (e.g.,
centrality) on tie formation (Chung, Singh, and Lee,
2000; Gulati, 1995; Gulati and Gargiulo, 1999).
However, for a number of reasons, these approaches
impose significant limitations when examining net-
work formation. Standard statistical methods are
based on assumptions of independence, which are
problematic for network data that are inherently
interdependent (Wasserman and Faust, 1994). Past

research has attempted to address this issue by
employing corrections such as the clustering of
standard errors or the creation of separate con-
trol variables to correct for autocorrelation among
observations (Lincoln, 1984; Stuart, 1998), or it
has treated the problem as a sampling issue and
tackled it by using elaborate weighting methodolo-
gies (Barnett, 1993; Gulati, 1995). These techniques
may provide an insufficient solution to the study of
network formation, given the dependence of obser-
vations in relational data that make it impossible to
correctly cluster standard errors or to appropriately
control for oversampling (Greene, 2008).

More importantly, standard regression methods
are generally not capable of incorporating various
local network structures such as triads stemming
from either endogenous structural effects or dyadic
effects (e.g., homophily between firms with similar
attributes) because they are not independent of
each other (Wasserman and Pattison, 1996). Thus,
when conventional statistical models are used for
network formation research, they are likely to
suffer from model misspecification, even with the
inclusion of firm- or dyad-specific co-variates.
Causal inference about the influence of specific
factors may be incorrect given this confounding
effect of the endogenous structural processes
(Cranmer and Desmarais, 2011; Goodreau et al.,
2009; Lusher et al., 2013). In sum, although stan-
dard statistical approaches are useful for research
from the perspective of the individual firm (i.e.,
ego-centric perspective), they are inappropriate to
study network formation when we have the goal
of examining the multiple processes that operate
concurrently to generate a global network.

Exponential random graph models

Exponential Random Graph Models (ERGMs) are
well suited to address the limitations of tradi-
tional regression methodologies. ERGMs are a class
of statistical models for social networks which
account for the presence (or absence) of net-
work ties (Robins et al., 2007a; Snijders et al.,
2006; Wasserman and Pattison, 1996). Relative to
traditional regression models, ERGMs provide a
superior approach to study network formation by
explicitly modeling endogenous dependencies that
may shape networks along with exogenous fac-
tors such as actor- or dyad-specific characteristics
(Lusher et al., 2013; Robins et al., 2007a). ERGMs
model ties as being interdependent, resulting in a

Copyright © 2015 John Wiley & Sons, Ltd. Strat. Mgmt. J., 37: 22–44 (2016)
DOI: 10.1002/smj



Understanding Network Formation in Strategy Research: ERGMs 27

variety of local network configurations (as repre-
sented in Figure 1). These network configurations
are consequential patterns that may reflect impor-
tant social processes such as reciprocity or clus-
tering that simultaneously affect the formation of
a global network. The formation of ties and net-
work structures is tested for statistical significance
relative to what might be expected through random
tie formation, conditioned on other effects in the
model. ERGMs do not require the assumption of
independence between network ties and avoid the
need for a matched sample design or the bias correc-
tion techniques for rare events that have been used
in prior network research.

ERGMs can incorporate different types of
network configurations and estimate their effects
on network formation. For instance, ERGMs can
describe the likelihood of the formation of recipro-
cal ties or whether a tie between two actors, already
tied to a common third actor, is more likely to be
observed (i.e., triad closure) in an overall network,
conditioned on the structure of the network. Given
that structural outcomes such as triad formation
have been shown to be interdependent, such an
inference is problematic for standard statistical
methods (Wasserman and Faust, 1994).

Moreover, ERGMs can accommodate any num-
ber of binary, categorical, or continuous actor- or
dyad-specific co-variates as well to see whether they
are associated with the formation of network ties.
ERGMs can also be used to analyze different types
of networks such as directed and nondirected net-
works, bipartite, and multiplex networks with vari-
ous types of nodes and relationships (Lusher et al.,
2013; Robins, Pattison, and Wang, 2009; Wang,
2013; Wang et al., 2013). Therefore, ERGMs pro-
vide a powerful, flexible tool to separate various
social processes operating concurrently and eval-
uate the relative contribution of each on the for-
mation of the observed network structure (Lusher
et al., 2013; Robins et al., 2007a). At least in this
aspect, these broader capabilities of ERGMs are in
some ways analogous to the advantages of statistical
analysis tools such as structural equation modeling
(SEM), which allow researchers to simultaneously
capture wider system-level effects. For example,
as SEM expands from conventional cause-effect
regression modeling to the concurrent analysis
of more complex co-variance structures, ERGMs
go beyond nodal and dyadic factors modeled in
conventional logistic regression to capture diverse
factors at the broader network level.

ERGMs trace their origins to influential work by
Frank and Strauss (1986) who applied spatial statis-
tical approaches to networks and proposed Markov
random graph models to directly address the issue
of interdependence. The models became widely
known as p* models from the seminal work by
Wasserman and Pattison (1996), which broadened
the use of this approach to network analysis. A num-
ber of subsequent advances, including adaptations
for local “neighborhood” network structures (Patti-
son and Robins, 2002) and methods for overcoming
the problem of model degeneracy (Hunter and
Handcock, 2006; Robins et al., 2009; Snijders et al.,
2006) have helped develop ERGMs into a viable
tool for analyzing real world network data.

Recently, ERGMs have begun to be adopted in a
wide range of social science disciplines, including
sociology, demography, communications, and polit-
ical science (e.g., Atouba and Shumate, 2010; Cran-
mer and Desmarais, 2011; Goodreau et al., 2009;
Wimmer and Lewis, 2010). A small, yet grow-
ing number of recent organizational studies using
ERGMs demonstrates the potential of the method-
ology as a useful tool for modeling multiple social
processes, though these techniques have seldom
been applied to empirical research focused on strat-
egy questions. We provide a summary of recent
studies using ERGMs in organizational research in
Table S1, along with a description of how they apply
ERGM techniques.

STATISTICAL INFERENCE THROUGH
ERGMS

Statistical framework and dependence
assumptions

ERGMs have the following form

Pr (X = x) = (1∕k) exp

[∑
A

𝜂AzA (x)

]
, (1)

where Xij is a random variable that represents a tie
between actor i to actor j (Xij = 1 if there is a tie from
actor i to j, and 0 otherwise). These ties are repre-
sented in an n× n adjacency matrix (n= number of
actors in the network) denoted as X, and x denotes a
matrix of realized ties in the network. When ties are
nondirectional (edges), X is symmetric. When ties
are directional (arcs), Xij ≠Xji. The A refers to dif-
ferent network configuration types. The zA(x) terms
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are model co-variates, denoting any set of A network
statistics calculated on x and theorized to affect the
probability of this network forming. Examples of z
statistics are the number of ties, the number of ties
between firms with a shared nodal characteristic, or
the number of closed triads and so on. Equation 1
may be modified by replacing zA(x) with zA(x, P)
to accommodate additional co-variate information
P such as firm- or dyad-specific characteristics. The
𝜂A coefficients are unknown parameters to be esti-
mated, and they determine the effect of the network
statistics included in the model for the observed
network. The k stands for the quantity from the
numerator summed over all possible networks with
n actors. It constrains the probabilities to sum to 1.
Simply put, ERGMs place more or less weight on
networks with certain features, as determined by 𝜂A
(i.e., parameters), and zA (network statistics). The
equation above can also be expressed in terms of
the conditional log-odds (logit) of individual ties:

logit
(

P
(

Xij = 1 |n,Xc
ij

))
=
∑

A

𝜂A𝛿zA (x) , (2)

where Xc
ij denotes the rest of the network other than

the single variable Xij, and 𝛿 ZA is the amount by
which zA changes when Xij is changed from 0 to
1. The presence of Xc

ij in the conditional statement
in the left-hand side of the equation represents the
mutual dependence of ties, showing how ERGMs
explicitly accommodate interdependent observa-
tions. This alternative specification also clarifies the
interpretation of 𝜂A vector, the coefficients of inter-
est. If forming a tie increases zA by 1, then all other
things being equal, the log-odds of that tie forming
increase by 𝜂A.

To implement ERGMs, it is important to under-
stand the dependence assumptions that define the
ways in which the observed ties may be related
(Brandes et al., 2013; Pattison and Robins, 2002;
Robins et al., 2007a). A particular dependence
assumption determines the different types of net-
work configurations to be included in a model
(Lusher et al., 2013; Robins et al., 2007a). The sim-
plest dependence assumption is that all possible dis-
tinct ties are independent of one another; they occur
randomly with a certain fixed probability. A sec-
ond assumption is that dyads are independent of one
another. For example, reciprocity in a directed net-
work is a form of dependency assumption where the
two possible directed ties within a dyad are depen-
dent on each other. This assumption is sometimes

referred to as “dyadic independence” because there
are no other effects outside the dyad that influence
the formation of ties, and so the dyads are inde-
pendent of each other. However, these two assump-
tions are usually implausible in most of the observed
social networks (Snijders et al., 2006). For example,
if we believe that ties do not depend on each other,
there would be no local network configurations
formed such as stars or triangles other than a recip-
rocated tie. A more realistic assumption is Markov
dependence (Frank and Strauss, 1986), where ties
may depend on the presence of a common actor.
For example, the relationship between A and B may
well be dependent on the presence or absence of a
relationship between B and C. As explained in the
following section, models exclusively based on the
Markov dependence assumption do not represent
the observed network data well due to the problem
of model degeneracy (Handcock, 2003a, b). Finally,
the most common assumption is the “social circuit
model”, in combination with Markov dependence
(Pattison and Robins, 2002). In this model, some
dyads are conditionally dependent on the presence
of other ties, even without a common actor (see
Koskinen and Daraganova, 2013a, b) for more com-
prehensive explanations on the different types of
dependence assumptions).

Model estimation

Parameters in ERGMs were initially estimated
using maximum pseudo-likelihood (Strauss and
Ikeda, 1990), yet this approach tends to perform
poorly, particularly with dyad-dependent models.
Instead, Markov Chain Monte Carlo maximum
likelihood estimation (MCMC-MLE) procedures
have been used (Geyer and Thompson, 1992;
Snijders, 2002). Monte Carlo estimation sim-
ulates a distribution of random graphs using
starting values of parameter estimates generated
by pseudo-likelihood, and it repeats the process to
get refined values by comparing simulated distri-
butions of graphs with the observed data (Snijders,
2002). The benefit of the MCMC-MLE approach
is that with an infinite number of draws from the
distribution of network configurations, it gives esti-
mates equivalent to the MLE and provides reliable
standard errors while including dyad-dependent
terms (for a review, see Wasserman and Robins,
2005). Currently, the MCMC-MLE approach is the
default for most software packages. One drawback
associated with the use of this procedure is that
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resulting networks generated by parameter esti-
mates with Markov dependence assumptions were
often degenerate—that is, the model produced
estimates that created a graph with no ties at all or
a complete graph with ties connecting every node.
This problem of model degeneracy is primarily
due to poor model specification and often occurs
among networks with a high level of triangles
(Handcock, 2003a, b). Scholars have developed a
series of new network specifications called social
circuit dependence (Pattison and Robins, 2002)
that significantly curtail such issues (Hunter and
Handcock, 2006; Robins et al., 2009; Snijders
et al., 2006). Thus, in our application, we adopt
these new specifications to examine structural
effects, following prior research (Goodreau et al.,
2009; Wimmer and Lewis, 2010).

APPLICATION

To illustrate the capabilities of ERGMs and their
application in the field of strategy, we examine the
phenomenon of board interlocks, interorganiza-
tional ties that are formed between firms sharing
executives on their boards of directors (Mizruchi,
1996). Prior research has identified a variety of
factors that influence dyadic interlock tie forma-
tion (Beckman, Haunschild, and Phillips, 2004;
Mizruchi and Stearns, 1988; Pfeffer and Salancik,
1978), yet few studies explicitly account for the
influence of endogenous structural processes—that
is, the existing set of board interlocks—in the
formation of future interlock ties (Harrigan and
Bond, 2013). Thus, we explore whether the influ-
ence of firm- and dyad-specific characteristics
persists while structural effects are taken into
account.

Sample and data

We chose to focus our study on the network of inter-
locks formed between the boards of directors of
U.S. firms belonging to the Fortune 100 in 2005
to predict the subsequent formation of interlock
ties among these companies from 2006 to 2010.
Long-established research has argued that director
ties among the most important firms in the U.S.
economy result in the formation and persistence of a
corporate elite (Mills, 1956; Palmer, Friedland, and
Singh, 1986), who act to ensure the maintenance
of their privileged position in the economy as well

as offering a platform for the diffusion of infor-
mation and new managerial practices (Davis, 1996;
Haunschild, 1994; Haunschild and Beckman, 1998;
Mizruchi, 1996). We use 2005 as the reference year
for firm and dyadic attributes and track the subse-
quent formation of interlock ties between compa-
nies in our sample during the period of 2006–2010.
The Sarbanes-Oxley legislation passed in 2002 led
to substantive changes in board composition and
membership. Our study period lags this change and
captures boards after changes made in response
to the legislation related to the availability and
willingness of directors to sit on multiple boards
(Green, 2005; Linck, Netter, and Yang, 2009). Fol-
lowing prior research (Beckman et al., 2004), we
omit privately held organizations such as insurance
firms from our sample to ensure the consistency of
financial information in our analysis, resulting in a
final sample size of 95 firms.

We capture a new board interlock tie for each
instance in which a director or executive of a firm
accepts a directorship with another firm in the sam-
ple. We draw interlock data from the GMI Ratings
corporate governance database (formerly known
as the Corporate Library), a third-party resource
tracking board membership in publicly traded U.S.
firms. The resulting binary ties recorded among all
potential dyads are then assembled into a 95× 95
binary sociomatrix (essentially, a grid listing all
firms on the vertical and horizontal axes, capturing
the presence or lack of board interlock ties for each
possible dyadic combination of sample firms) to be
analyzed by ERGMs. This is a directed network,
given that the focal firm essentially initiates a
tie by inviting a director from another firm to
serve on its board. We observe a total of 129 new
interlock ties formed between sample firms during
the 2006–2010 period of our study.

We also collected data on our independent vari-
ables from a variety of additional sources. Data for
firm size and all financial measures were obtained
from COMPUSTAT. Alliance data were obtained
through the SDC Platinum database.

Variables and measures

The dependent variable in our study is tie formation
through board interlocks among the 95 sampled
firms. Our key independent variables examine the
effect of board characteristics at different levels of
analysis—firm characteristics, dyad–co-variates,
and structural effects—on subsequent board ties.
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Firm level characteristics

Prior research on boards of directors has empha-
sized the role that firm characteristics play in
determining what interlock relationships may form.
Research has shown that geographic proximity is
an important determinant for network formation of
corporate interlocks (Kono et al., 1998). We exam-
ine the influence of geography by modeling whether
a tie is more likely between firms located in the
same State, while accounting for geographic levels
of tie formation. Empirically, we include a series of
indicator variables for the 10 states most commonly
represented in our data, which cover 74 percent of
our sample population. The remaining firms are
grouped into the reference category. We also include
a term to capture homophily effects of colocation
in a common state. This approach is analogous to
including both main effect and interaction terms
in a regression. The main effect in this case is
to control for the propensity of firms located in a
particular geographic region to make ties, whereas
the interaction effect tests whether firms located
in the same region are more likely to make ties
with each other, over the variance explained by
the main effect. We include Firm size by mea-
suring the number of employees in each firm as
reported in the reference year of 2005. Managers
and directors of successful firms may be more likely
form ties (Davis, 1993; Withers et al., 2012); thus,
we include Profitability of a company by measur-
ing its ROA, again in 2005. We include Market
uncertainty, which has been shown to influence
a firm’s propensity to pursue interorganizational
relationships as it seeks to lessen its dependence
and alleviate environmental uncertainty (Pfeffer and
Salancik, 1978). We measure this variable as the
average monthly volatility across all companies in
the focal firm’s industry using four-digit SIC code
(Beckman et al., 2004). Prior experience in external
interorganizational relationships may influence a
firm’s motivation to make additional ties (Beckman
et al., 2004; Yue, 2012). Therefore, we also include
a measure of the Number of prior alliances in which
each firm engaged during the period from 2001
to 2005.

Dyad level characteristics

The presence of existing relationships among firms
can influence their subsequent tie formation. Thus,
we examine whether firms in our sample had any

previous interlock ties with each other before the
period of our study. Prior interlocks is operational-
ized as a binary sociomatrix valued as 1 for the
presence of one or more prior ties between a pair
of sample firms and 0 otherwise. We draw from
the GMI Ratings corporate governance database,
using 2001–2005 as the reference period for this
variable. We also examine whether firms that are
similar in size may be more likely to make inter-
lock ties with each other. Size difference is a dyadic
co-variate consisting of the absolute difference in
firm size operationalized by the number of employ-
ees for each firm.

Structural effects

Structural processes can also be important drivers
of board network formation, but empirical exam-
ination of such effects has been largely absent in
prior board interlock research. To facilitate under-
standing of each of the structural terms we include
in the model, we provide a graphical presentation
of each structural term in Figure 2. We follow in
the path of prior research suggesting that models
should include at least a parameter for density,
some control over the degree distribution and triad
closure to properly capture the features of the net-
work in general (Robins and Lusher, 2013; Robins
et al., 2009; Snijders et al., 2006). We include
the following set of structural effects that may
occur independent of firm or dyad characteristics.
Reciprocity captures the tendency of a tie being
reciprocated from j to i when firm i has an existing
tie to firm j; in our study, it represents the likelihood
that firm i that already has a director of firm j on
its board will subsequently place a member of its
board on the board of firm j. Ties are directional,
with one actor initiating them and another receiving
them. In the interlock context, the initiator is the
firm that puts another firm’s director on its own
board while the firm that originally had the board
member is the receiver. We use two measures
to capture the differences between senders and
receivers. Popularity and activity spread (star-like
configurations) capture the tendency of network
centralization in the in- and out-degree distributions
(Pattison and Robins, 2002). Popularity spread
measures how often a firm’s director is invited for
a directorship from multiple firms, while Activity
spread captures how often a firm initiates an
interlock tie by inviting a director from other firms.
Triads represent an important intermediate level in
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Parameter Diagram Social Process statnet term

Purely structural effects

Arc edges

Reciprocity Firm A's tendency toward 
inviting a director of firm B 
whose director is already on 
Firm A's board

mutual

Popularity Spread gwidegree

Activity Spread gwodegree

Generalized transitive closure gwesp

Multiple Connectivity gwdsp

Actor relation effects 
(black nodes indicates actor with 
attribute)

Sender (firm size) nodeocov (firm size)

Sender (profitability) nodeocov (profitability)

Sender (prior alliance activities) nodeocov (prior alliance activities)

Sender (uncertainty) nodeocov (uncertainty)

Receiver (firm size) nodeicov (firm size)

Receiver (profitability) nodeicov (profitability)

Receiver (prior alliance activities) nodeicov (prior alliance activities)

Receiver (uncertainty) nodeicov (uncertainty)

Homophily (state) nodematch (state)

Covariate network

Prior interlocks edgecov (prior interlocks)

Tendency of firms with a 
certain level of size, 
profitability, prior alliance 
activities or facing a certain 
level of uncertainty to be 
invited by other firms

Tendency of managers from 
firms located in the same 
geographic location to sit on 
common boards

Tendency for a dyad of 
firms that had prior 
interlocking ties to make a 
new tie through board 
interlock

Baseline tendency for 
interlock tie formation

Tendency toward variation in 
the degree to which a 
manager of firm A is invited 
to sit on multiple boards.

Tendency toward variation in 
the degree to which firm A 
invites a director from 
multiple firms to sit on its 
board
Tendency for the closure of 
transitive triads (when firm 
A's board has a director 
from firm B, and when firm 
B's board has a director 
from C, firm A is more likely 
to invite a director from firm 
C)
Tendency for the formation 
of multiple 2-paths 
connecting firms in the board 
interlocking network

Tendency of firms with a 
certain level of size, 
profitability, prior alliance 
activities or facing a certain 
level of uncertainty to invite 
a director from other firms

Figure 2. Summary of structural effects included in the ERGM estimation for board interlocks
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network analysis between the individual dyads and
larger network structures (Madhavan et al., 2004;
Wasserman and Faust, 1994). In our context, triad
closure refers to the likelihood that a board inter-
lock will form between two firms that both have
existing ties with a third firm. We capture this effect
using the term Generalized ransitive closure (other
forms of triad closure may be modeled in a directed
network—Robins et al. (2009) provide greater
detail on these alternative terms). Finally, Multiple
connectivity captures a tendency for the formation
of nonclosure structures where two actors are
connected by multiple paths: in our context, in
which firm A and firm B are indirectly connected
through other organizations that share board inter-
locks with the two firms. Research suggests that
inclusion of this term permits refined inferences
about transitivity effects because a triad closure
contains other lower-order configurations such as
popularity and activity spread (Robins et al., 2009).

We use new specifications to incorporate these
structural effects (Goodreau et al., 2009; Hunter,
2007; Wimmer and Lewis, 2010) and to overcome
the problem of model degeneracy discussed earlier.
Popularity spread and activity spread are included
by using geometrically weighted in-degree dis-
tribution (GWID) and geometrically weighted
out-degree distribution (GWOD), respectively.
They model the shape of the in- and out-degree
distribution. A large, positive coefficient for these
parameters suggests a network with high-degree
nodes. The GWID statistic models a tendency
toward variation in the degree to which firm A’s
director is invited to join multiple external boards.
The GWOD statistic indicates, on the other hand, a
tendency toward variation in the degree to which
firm A invites directors from multiple external
firms to join its board. Basic triangles are included
in ERGMs by a geometrically weighted shared
partner (GWESP) statistic. This term indicates a
general tendency for network closure of transitive
triads (i.e., when firm A has a board interlock
with firm B, and firm B has an interlock with firm
C, A is more likely to form an interlock tie with
C). Finally, multiple connectivity is included by
geometrically weighted dyad-wise shared partner
distribution (GWDSP) statistics. This statistic
models a tendency for the formation of multiple
two-paths connecting firms in the board interlock
network.

Adding structural effects to the examination and
estimation of board interlock formation provides

several distinct advantages. A co-variate–only
model without structural terms tends to overesti-
mate the effect of firm- or dyad-level characteristics,
whereas a full model that includes the structural
terms can specifically estimate the unique effects of
those factors. As a result, estimates of the effects of
firm and dyadic co-variates may be smaller in the
full model than in the co-variate–only model. We
also predict that the full model will fit the observed
network better than the co-variate–only model
because at least some of the structural effects such
as reciprocity and triad closure are important social
processes influencing board interlock formation.
We estimate our models using MCMC-MLE in
the ERGM package, a part of the statnet suite of
packages for R (Hunter et al., 2008b). There are
other useful software packages available for ERGM
analysis, such as the PNet suite of programs for
ERGMs (Wang, Robins, and Pattison, 2009) or
SIENA-p* in StOCNET (Snijders et al., 2008).

Analysis and results

For the main descriptive statistics of the network
of board interlocks, the probability that any pair
of firms has a board interlock tie at some point
during the study period is 1.4 percent (i.e., network
density= 0.014). The average degree is 2.72. The
standard deviation of out-degree (1.57) is slightly
greater than that of in-degree (1.33). Thus, the
sample firms are more heterogeneous in terms
of initiating ties (i.e., inviting new directors who
currently sit on the boards of other firms) than in
terms of receiving ties.

The results of the ERGMs are shown in
Table 1. Model 1 includes firm characteristics and
dyad-specific co-variates without any structural
terms. It is important to note that when ERGMs
include only firm- or dyad-specific characteristics,
the results are the same as what would be obtained
from conventional logistic regression analysis fre-
quently used in prior research (Koehly, Goodreau,
and Morris, 2004). Thus, Model 1 provides a
benchmark for comparison to the model with
structural terms included. Model 2 adds a variety
of structural terms explained earlier, along with the
firm characteristics and dyad-specific co-variates.

We first consider whether a full model with the
structural terms shows improvement with respect to
model fit based on Akaike’s Information Criterion
(AIC) (Akaike, 1998). The smaller the value of AIC,
the better the model fits the data. The AIC of Model

Copyright © 2015 John Wiley & Sons, Ltd. Strat. Mgmt. J., 37: 22–44 (2016)
DOI: 10.1002/smj



Understanding Network Formation in Strategy Research: ERGMs 33

Table 1. Formation of board interlock in Fortune 100 firms

Parameter
Model 1 co-variates–only

(no structural term)
Model 2 co-variates
and structural term

Purely structural effects
Arc −13.23*** −10.39***
Reciprocity — 2.72***
Popularity spread — −0.07
Activity spread — −0.57
Generalized transitive closure — 0.83***
Multiple connectivity — −0.12+
Actor relation effects
Sender (firm size) 0.49*** 0.35***
Sender (profitability) 8.46*** 6.25**
Sender (prior alliance activities) 0.002 0.002
Sender (market uncertainty) 1.56 1.61
Receiver (firm size) 0.23** 0.15+
Receiver (profitability) 4.81* 3.42
Receiver (prior alliance activities) 0.001 0.001
Receiver (market uncertainty) −3.17+ −3.01+
Homophily (state) 1.08*** 0.79***
Homophily (firm size) −0.09 −0.05
Co-variate network
Prior interlocks 0.74** 0.59*
Akaike information criterion (AIC) goodness of fit 1,264 1,196

+p< 0.1; *p< 0.05; **p< 0.01; ***p< 0.001.

2 is substantially smaller than Model 1, suggesting
that systematic network properties are important in
producing the observed network of board interlocks
in our sample.

We are interested in the underlying processes of
tie formation or how the observed network could
have been formed (Lusher et al., 2013). Thus, in
addition to model selection criteria such as AIC,
we also employ graphical evaluations of goodness
of fit to visualize the match between the predicted
and observed networks in Figure 3(a, b) (Goodreau
et al., 2009; Hunter, Goodreau, and Handcock,
2008a). Each plot compares the observed data
to 100 randomly generated simulated networks
obtained from the fitted models we examined. This
allows the researcher to gain a visual sense of model
fit by observing how well the distribution of plot-
ted points of networks randomly generated from the
fitted models match the actual observed network
(represented by the dark line) in terms of key struc-
tural properties of the network such as the propor-
tion of incoming or outgoing ties to other actors. We
show the logit of relative frequency on the y-axis for
greater ease of interpretation.

The first and second plots in Figure 3(a, b) rep-
resent the out-degree distribution (the number of
connections a focal node has sent to other nodes)

and in-degree distribution (the number of connec-
tions a focal node has received from other nodes).
Model 2 fits slightly better than Model 1 with the
dark line of Model 2 passing through the median
point of the box plots for the range, yet Model 1
also does a relatively good job of producing net-
works that reflect the actual degree distribution.
The third plot shows the distribution of the triad
census, which captures 16 different forms of tri-
ads (see Holland and Leinhardt, 1970, for details
on the 16 triad forms). While Model 1 underes-
timates several types of triangle structures in the
observed network (suggesting a relatively poor fit),
Model 2 appears to provide an improvement with
simulated numbers of each type of triad closely fol-
lowing the pattern of the observed network. The
fourth plot in Figure 3(a, b) shows the distribution of
shared partners (number of third-party interlock ties
in common between a given pair of firms), which
indicates the level and scale of clustering. Here,
we also see a noticeable difference between Mod-
els 1 and 2. By directly modeling the local struc-
ture with the inclusion of a term for shared partners,
the plot illustrates that Model 2 provides a good fit
between the simulated and observed networks. In
contrast, Model 1 appears to be more divergent in
terms of this network characteristic. Finally, the fifth
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Figure 3. (a) Goodness-of-fit diagnostics for Model 1 (without structural effects). The dark solid line represents a given
statistic from the observed board interlock network. The boxplots represent the same statistic from the 100 simulated
networks; they include the median and interquartile range. The light-gray lines represent the range in which 95 percent
of simulated networks fall. The Y-axis is expressed as a loglikelihood to facilitate interpretation. In summary, Model 1
without any structural effects shows a lack of fit, particularly in terms of “triad census” and “edge-wise shared partners”
model statistics, as evidenced by the gap between the dark solid line and the trend of the boxplots. (b) Goodness-of-fit
diagnostics for Model 2 (with structural effects). Compared to Model 1, Model 2 with structural effects shows a noticeable
improvement of model fit by explicitly capturing additional structural effects through the GWESP and GWDSP terms
included in the model. In each network statistic, the pattern of the boxplots from simulated networks are largely in line

with the dark solid line from the observed network.
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Figure 3. Continued.

plot examines a higher-order network statistic, the
distribution of geodesic distances, tabulated across
all actors. Geodesic distances represent the pairwise
shortest distances between firms. Both Models 1
and 2 appear to provide a relatively good for the
lower range of the plot, yet beyond the middle point
the observed distribution diverges from the model
prediction. Note that geodesic distance is a global
property of the network (Goodreau et al., 2009), and
our models (both Models 1 and 2) do not include

a specific structural term to capture this property
because we do not propose specific examples of
factors in the interlock context that would explain
global network properties. Thus, although we pro-
vide the plots for geodesic distances as one of the
ways to graphically demonstrate model fit, it is not
surprising to see little improvement of Model 2 over
Model 1 for this particular network characteristic.
Depending on the goals of their study, researchers
may explicitly capture this higher-order property in
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their models (Morris, Handcock, and Hunter, 2008,
provide a discussion of ERGM terms related to this
property).

Because Model 2 provides a better fit with
the observed data, we further examine the model
coefficients in order to assess the drivers of board
interlock formation. In ERGMs, a positive coef-
ficient suggests greater prevalence of a given
configuration in the network than that which would
be expected, conditional on the other effects in the
model, whereas a negative coefficient indicates that
the configuration occurs less often than expected
(Lusher et al., 2013). Returning to the results in
Table 1, the negative, significant coefficient of
Arc in Model 2 suggests that interlock ties occur
relatively rarely, especially if a given pair of firms
is not part of a higher order structure such as a star
or triad. The Arc term in ERGMs is equivalent to
an intercept term or a grand mean in regression or
ANOVA, indicating the baseline propensity for tie
formation in the network (Strauss and Ikeda, 1990;
Wasserman and Pattison, 1996). The Reciprocity
term represents the strength of reciprocity within
dyads. The coefficient of Reciprocity in Model 2
is positive and highly significant, suggesting that
firms are likely to reciprocate board membership
with each other (e.g., a director/executive of firm
A is more likely to hold a directorship in firm B
whose director/executive has already been on firm
A’s board). The popularity spread and activity
spread terms account for dispersion in the in-
and out-degree distribution in the network. The
coefficients for both terms are not significant. The
positive, significant coefficient on the Generalized
Transitive Closure term indicates that controlling
for the tendency to reciprocate ties and for multiple
connectivity, board interlock ties tend to take place
in transitive structures. The results also imply that
clusters in this network are driven by groups of
overlapping triangles rather than clusters of firms
that are either particularly popular or active. In
terms of firm-specific characteristics, the positive,
significant coefficient for Sender (Firm size) sug-
gests that, when structural effects are accounted for,
large firms are more likely to invite directors to join
from other firms. The results also suggest that high
performing firms (positive, significant coefficient
for Sender [Profitability]) are more likely to invite
external directors to join their boards, conditional
on the other effects in the model. The positive, sig-
nificant coefficient on Homophily (State) suggests
that firms located in the same states are more likely

to make interlocking ties with each other. Finally,
firms are more likely to make interlock ties when
they have shared interlock ties previously (positive,
significant coefficient for Prior interlocks).

In fact, the comparison of Models 1 and 2
shows the striking change in terms of the effects
of some co-variates. The coefficient associated
with Receiver (Firm size) is highly significant in
Model 1 (p< 0.01); however, it is only marginally
significant in Model 2. In other words, after
explicitly accounting for endogenous structural
effects, the significance of the tendency to invite
directors of large firms to join external boards is
substantially reduced. The magnitude of the coef-
ficient is also decreased. Similarly, the influence
of Receiver (Profitability) also loses significance.
While some firm-level characteristics (Firm size
and Profitability in initiating board interlock ties)
and dyad-level characteristics (homophily [State],
prior interlocks) are shown to be influential in
Model 2, the comparison of Models 1 and 2 shows
a general pattern that the magnitude of coefficients
and their significance level diminish with the
inclusion of structural effects, as we anticipated.
From a theoretical standpoint, these findings may
support the notion that social processes related
to reciprocity or information obtained through
common third-party ties (i.e., transitivity) actu-
ally explain variation in interlock tie formation
that would otherwise be attributed to target firm
characteristics of prominence and success.

Overall, these results suggest that a variety
of structural processes have unique explanatory
power for board interlock tie formation among the
largest, public U.S. firms, indicating that network
formation models that fail to control for endoge-
nous processes provide only a partial picture of the
dynamics in this network. This analysis emphasizes
the importance of simultaneously accounting for
network–self-organizing processes as well as other
firm- and dyad-specific co-variates in order to
gain an accurate understanding of the complicated
mechanisms of network formation, a task uniquely
suited to ERGM techniques.

DISCUSSION

Network formation is the result of critical social
processes driven by numerous factors. While
prior research has employed traditional regres-
sion methods to empirically examine network
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formation, we propose the use of ERGMs as a
superior alternative that offers several advantages.
The primary advantage of ERGMs is that they
allow accurate specification of multiple processes
that simultaneously influence the creation of an
observed network structure. In particular, ERGMs
allow the incorporation of purely endogenous struc-
tural processes such as reciprocity, triad closure and
higher-order dependencies while accounting for
other actor and dyad specific attributes. In addition,
ERGMs do not require the assumption of indepen-
dence that underlies conventional models, enabling
researchers to analyze complex relational data,
and disentangle concurrent effects in a rigorous
manner. Using ERGMs, strategy researchers may
construct hypotheses of distinct social processes
and test them directly to evaluate their relative
contribution to network formation (Robins et al.,
2007a).

We provided a brief overview of recent network
research, discussed some of the limitations of cur-
rent methodological approaches and elaborated the
basic concepts underlying ERGMs and how they
offer unique strengths for studying network for-
mation. Our application example demonstrates the
advantages of ERGMs, uncovering interesting find-
ings that would not have been possible using con-
ventional techniques. For example, there has been
little empirical research explicitly examining the
influence of endogenous structural processes on
board interlock formation even though social net-
work theory has been a dominant theoretical lens
in the literature (Withers et al., 2012). ERGMs pro-
vide a useful tool to address these processes, and our
results show that the board interlock network is in
part a function of endogenous structural processes
such as reciprocity and triad closure. Our examina-
tion of board interlocks using ERGM demonstrates
how the failure to account for multiple processes
or simultaneously include endogenous structural
effects can lead to incorrect or incomplete infer-
ences regarding the role of factors influencing net-
work tie formation. We find that the influence
of firm- and dyad-level characteristics diminishes
substantially in magnitude and significance after
accounting for structural effects, making an impor-
tant contribution to our empirical analysis. Our
results also help resolve the inconsistent findings
regarding the influence of firm profitability on inter-
lock formation, providing evidence that profitability
may not play a significant role when network struc-
tural effects are considered.

Despite their advantages, ERGMs do have spe-
cific limitations as an empirical methodology for
network analysis. One limitation is that they can
only be used to model binary outcomes—the pres-
ence or lack of ties among actors in a network.
Consequently, when ties vary in strength, they must
be dichotomized in order to be analyzed using
ERGMs. In our application, we operationalized
ties using board interlocks. It is rare for mul-
tiple directors or executives of a given firm to
overlap in their directorships in another specific
firm simultaneously. As a result, the creation of
a binary variable is appropriate for our sample
and research question. For other applications where
there is important variance in the value of the tie,
researchers may want to first consider the distribu-
tion of the values and understand how the opera-
tionalized variable can be dichotomized (e.g., val-
ues either above or below the median for the over-
all sample). Another limitation of ERGMs, par-
ticularly the MCMC-MLE procedures we used in
our examples, is that they can be computation-
ally intensive, requiring substantial computational
resources (especially with large-scale data). Fur-
thermore, model degeneracy—cases in which the
fitted model does not offer a good fit to the observed
data due to model misspecification (Handcock,
2003a, b)—remains a challenge. However, recent
(and continuing) development of these models has
resulted in new network specifications that have
limited the problem of model degeneracy and facil-
itated the adoption of the methodology (Robins
et al., 2007b). We employed these new network
specifications in our empirical study and our pre-
dicted model provided a generally good fit to the
observed data without the problem of model degen-
eracy, as shown in Figure 3(b).

Potential use of ERGMs in strategy research

Several features of ERGM methodology provide
significant opportunities to extend strategy research
in meaningful ways. First, the ability of ERGMs
to directly account for tie dependencies in network
data allows more precise analysis of the effect of
factors that have been examined in prior research.
Because ERGMs do not assume independence
among observations and account for endogeneity,
they can be used to test theories of tie formation
to establish rigorous empirical evidence, a critical
ingredient to develop models that are not only
appealing, but also scientifically valid (Colquitt
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and Zapata-Phelan, 2007). For example, much
prior research has examined the influence of orga-
nizational resources on alliance formation. While
firms with more resources have more opportunities
to form ties, their greater level of resources may
also eliminate the need for collaboration through
alliance.

To try to understand the competing effects of
resources, some researchers have proposed an inte-
gration of both perspectives, resulting in a curvi-
linear relationship between resources and alliance
formation (e.g., Gu and Lu, 2013). Of course, firms
may also be more likely to form ties because of
their extensive histories of alliance formation (i.e.,
activity) or their popularity as an alliance part-
ner from the perspective of other potential part-
ners. In such analyses, it may be important to
first establish whether organizational resources have
any independent effect beyond other factors that
may simultaneously influence the formation of
an observed network. ERGMs can test the main
effect of organizational resources while explic-
itly controlling for numerous forms of structural
effects. Because ERGMs avoid the need to use
a matched sample design or analysis of only a
subset of firms by modeling tie formation across
the entire network, the inferences drawn as a
result of the empirical analysis are significantly
improved.

ERGMs may also help us better understand dif-
ferent types of local network patterns that generate
the observed structure of the overall network. For
example, brokerage is an important phenomenon
that directly relates to network formation and struc-
ture. Research has demonstrated that status and cen-
trality influence the formation of structural holes
(Zaheer and Soda, 2009) and that firms that are
in brokerage positions with heterogeneous partners
are more likely to sustain their network position
(Yin, Wu, and Tsai, 2012). ERGMs offer important
advantages over conventional methods to extend
research into brokerage and other structural effects
by modeling brokerage directly.

ERGMs’ flexibility to model exogenous firm-
and dyad-specific attributes as well as endogenous
structural effects allows researchers to hypothe-
size among competing explanations for network
formation to isolate the specific effects of inter-
est in their study with enhanced methodological
rigor. To highlight and demonstrate how ERGMs
may be used to extend past strategy research, we
provide a summary of recent strategy work on tie

formation in Table S2 with some specific comments
on the potential use of ERGMs to extend each
work.

ERGMs also open up a host of new and interest-
ing questions that can advance strategy research.
For example, ERGMs allow for the study of multi-
partner alliances that involve three or more actors
(Das and Teng, 2002; Lavie, Lechner, and Singh,
2007; Li et al., 2012). While multiparty alliances
have become more prevalent recently, especially
in high technology industries where different
groups of firms may work together, relatively little
is known about their formation (Li et al., 2012).
Given the empirical complexities inherent in the
study of multipartner alliances, scholars have
called for the development of methodologies that
can more effectively investigate these types of
structures (Rosenkopf and Padula, 2008). Because
ERGMs can directly model local network structures
such as triad and multipartner connectivity while
accounting for other types of endogenous effects
and exogenous factors, they provide a useful tool to
better understand the antecedents of multipartner
alliance formation.

Another promising area for the use of ERGMs is
research on the microfoundations of interorganiza-
tional network formation. Prior research has high-
lighted the important role of existing ties among
individuals for the subsequent formation of ties
between their firms (Gulati and Westphal, 1999;
Rosenkopf, Metiu, and George, 2001). For example,
in an entrepreneurial setting, new startups are
often founded by individuals who were previously
employed by industry incumbents and subsequently
left them to begin independent ventures (Klepper,
2001; Phillips, 2002). Thus, founders’ employment
relationships with their previous employers may
have an important influence on the types of ties
they form between their new ventures and the par-
ent firms. ERGMs are well suited to study these
situations as they allow for analysis of ties at two
levels—where the network is represented simul-
taneously through a set of ties between individual
actors and as a set of ties between organizations.
This permits the modeling of both sets of char-
acteristics, and their reciprocal effects on each
other, simultaneously. Such modeling approaches
ensure the preservation of the dualistic nature of
the structure rather than constraining relationships
into one form of tie or another (a network of
firms or a network of individuals) (Harrigan and
Bond, 2013). This methodological improvement is
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important because research focused on only individ-
ual or firm attributes, while simultaneously ignor-
ing social processes behind network formation, may
overestimate the impact of each of these attributes in
isolation. ERGMs provide a more accurate assess-
ment and understanding of the relative importance
of different factors leading to network formation at
the firm and individual levels.

Past network research in strategy has often
assumed that all ties formed between actors reflect
a single type of relationship. However, actors often
maintain qualitatively different relationships to
other actors connected with them both directly
and indirectly (Baker and Faulkner, 2002). In fact,
many interesting research questions in strategy
involve firms engaged in multiple types of ties
where the influence of such ties may span differ-
ent networks (e.g., Shipilov and Li, 2012). For
example, two firms may have an R&D alliance
with each other while at the same time both
being suppliers to a third firm (Gimeno, 2004;
Gulati and Gargiulo, 1999). Given the flexibility
of ERGMs to accommodate different roles for
each organization as actor attributes and different
types of relationships as dyad-co-variate or exoge-
nous networks, ERGMs provide an opportunity
to examine the influence of tie multiplexity on
the formation of networks among organizations
(Wang et al., 2013). In the discussion section, we
highlight recent extensions of ERGM techniques
that enable the study of multiplex ties in strategy
research.

Extensions of ERGM methodology

ERGMs are primarily used with cross-sectional
data and do not model longitudinal effects in a man-
ner directly analogous to conventional panel regres-
sion techniques. However, endogenous structural
processes can still be examined and demonstrated
over time using ERGMs with cross-sectional
data (Lusher et al., 2013). For example, to detect
whether homophily has an influence on the net-
work, researchers can observe the network at
different points in time and observe whether ties
were being formed among actors sharing similar
characteristics. As a result, analysis using ERGMs
with cross-sectional observations still offers impor-
tant insights regarding the effect of homophily on
the formation of the given network. Nonetheless,
networks evolve and are subject to change, and
more insight will be gained from longitudinal

network data. Recent developments have created
new opportunities for longitudinal analysis of
organizational networks using newer ERGM
techniques. For example, longitudinal ERGMs
incorporate parameters for dynamic change, focus-
ing on network ties (Snijders and Koskinen, 2013).
This approach has been demonstrated in the study
of changes in friendship networks (Igarashi, 2013)
and could be meaningfully applied to a variety
of time-based network phenomena in strategy,
such as the creation and dissolution of alliance
ties or changes in board interlocks. Note that
while ERGMs are primarily tie-oriented models,
stochastic actor-oriented models (SAOM) focus on
actor characteristics in network dynamics (Snijders,
2001; Snijders and van Duijn, 1997). Depending
on the research questions explored, SAOM may be
better suited than a tie-based approach for studies
focused on actor-driven theory and social processes
(Lusher et al., 2013).

Many interesting questions in strategy research
involve firms’ simultaneous participation in multi-
ple relational networks, connecting them to external
organizations through different types of ties. ERGM
techniques have recently been extended to address
the dynamics of such multiplex ties (Wang, 2013).
This allows the exploration of social processes
unique to multiplex networks, including the
co-occurrence of multiplex ties, reciprocity across
different types of ties, and entrainment, in which the
presence of one connection leads to the formation
of a different type of tie. Zhao and Rank (2013)
illustrate the capabilities of multiplex ERGM meth-
ods in an organizational setting, studying networks
of advice and employee satisfaction within bank
branches. They find evidence of cross-network
entrainment and reciprocity in these relation-
ships, processes that could not be tested through
conventional network analysis methodologies. The
occurrence of multiplex ties is quite common in
strategy network research, given that firms may be
linked through alliances, board interlocks, trade
associations, or other types of concurrent ties.
Recent work in strategy has begun to explore
such concurrent network effects (Ranganathan and
Rosenkopf, 2014; Shipilov et al., 2014; Wang et al.,
2014). Multiplex ERGM techniques can enhance
this stream of work, providing a sound methodology
for capturing the influence of cross-network rela-
tionships and offering a more realistic understand-
ing of the many linkages that may form between
organizations.
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Another potentially useful extension is multilevel
ERGMs, which allows the simultaneous examina-
tion of networks among individuals at one level,
organizations at another level, and cross-level net-
works between the organizations and individuals.
This methodology can be particularly useful if one
may be interested in how interdependencies among
different levels of networks influence network for-
mation. For example, Wang et al. (2013) examined
a collaboration network of French cancer scien-
tists and their affiliations with research laboratories
using multilevel ERGMs, demonstrating how mod-
eling of each network at the level of the researcher,
lab, and ties among researchers and labs provides
a more comprehensive understanding of network
formation.

Another model closely related to ERGMs is
the Autologistic Actor Attribute Model (ALAAM)
(Robins, Pattison, and Elliott, 2001). This technique
is designed to model behaviors of individuals as a
function of an underlying network structure that is
treated as exogenous. Although it is a social influ-
ence model that focuses on the attributes of nodes,
whereas ERGMs are a social selection model for
network structure, ALAAM follows similar logic to
that of ERGMs. Further development in these and
related techniques will permit researchers to better
understand network structure and its influence of the
practices and characteristics of network members
(Daraganova and Pattison, 2013) in areas such as
the diffusion and contagion of firm actions and prac-
tices in strategy research (e.g., Davis, 1991; Strang
and Soule, 1998).

In conclusion, ERGMs represent an important
technique that will allow strategy researchers to
empirically examine a wider host of phenom-
ena that have heretofore been inaccessible using
conventional methodological techniques. As the
connectedness among individuals, organizations,
and societies continues to increase, a better under-
standing of how network structures emerge is crit-
ical to our knowledge of network mechanisms
and outcomes. ERGMs allow scholars to build
on the considerable foundation of existing net-
work research while advancing our understanding
of networks even further. Our discussion of the
use of ERGMs demonstrates how strategy research
focused on the emergence of networks can be more
appropriately examined using ERGMs. We hope to
stimulate more interest in ERGMs among strategy
scholars and help to realize the promise of ERGMs

to advance our understanding of the genesis of orga-
nizational networks.
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