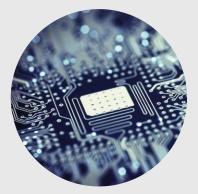
Finding the Next Solar Advantage

Kevin Chang | Nicholyn Chen | Sida Lu | Kenneth Shih

1) COST LEADERSHIP

Expertise in CdTe enabled industry cost leadership, bringing manufacturing costs to less than

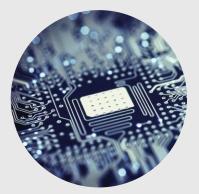

1) COST LEADERSHIP

Expertise in CdTe enabled industry cost leadership, bringing manufacturing costs to less than

2) TECHNOLOGICAL EXPERTISE

Strong R&D capabilities have led to production of **CdTe technology more efficient** than the industry average

Analysis


1) COST LEADERSHIP

Expertise in CdTe enabled industry **cost leadership**, bringing manufacturing costs to less than

2) TECHNOLOGICAL EXPERTISE

Strong R&D capabilities have led to production of **CdTe technology more efficient** than the industry average

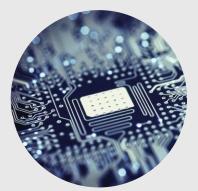
3) VERTICAL INTEGRATION

Ability to control all parts of value chain to **transfer cost savings** on to customers and leverage scale to **service the largest clients** in the market

Analysis

Rising Sun

Summer Solstice


1) COST LEADERSHIP

Expertise in CdTe enabled industry **cost leadership**, bringing manufacturing costs to less than

2) TECHNOLOGICAL EXPERTISE

Strong R&D capabilities have led to production of **CdTe technology more efficient** than the industry average

3) VERTICAL INTEGRATION

Ability to control all parts of value chain to **transfer cost savings** on to customers and leverage scale to **service the largest clients** in the market

4) FINANCIAL STABILITY

Having **positive cash flow** has allowed First Solar to pursue **sustainable growth** opportunities

Rising Sun

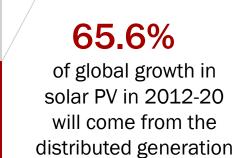
Summer Solstice

1) DISTRIBUTED GENERATION 2) WIDESPREAD GRID PARITY 3) INDUSTRY CONSOLIDATION

Traditionally, First Solar captured significant market share through securing **utility-scale projects**

Analysis Rising Sun Summer Solstice Feasibility

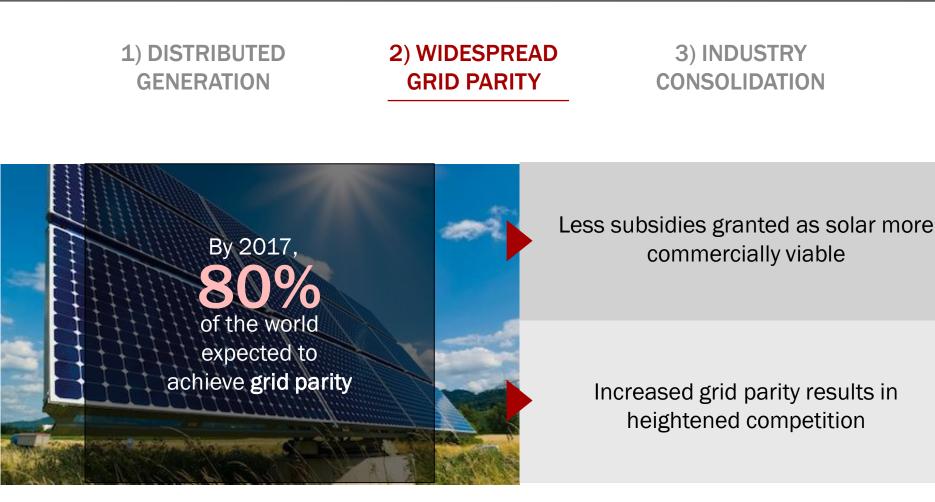
1) DISTRIBUTED GENERATION 2) WIDESPREAD GRID PARITY 3) INDUSTRY CONSOLIDATION



Traditionally, First Solar captured significant market share through securing **utility-scale projects**

"Distributed power capacity additions grew by **300%** from 37 to **142 GW** per year"

"Investment in distributed increase **five-fold** from \$30B to **\$150B**"


Source: General Electric, McKinsey

Analysis

Rising Sun

Summer Solstice

Source: Deutsche Bank

Analysis

Rising Sun

Summer Solstice

1) DISTRIBUTED GENERATION 2) WIDESPREAD GRID PARITY 3) INDUSTRY CONSOLIDATION

Projected that **70-80%** of domestic **demand in Chin**a will be owned by **10 players**

0

US module manufacturing facilities shrunk from **51 in 2011 to 38 in 2013**

More players will enjoy the benefits of scale production, and will create greater price competition in upstream markets

Source: International Energy Agency

Analysis

Rising Sun

Summer Solstice

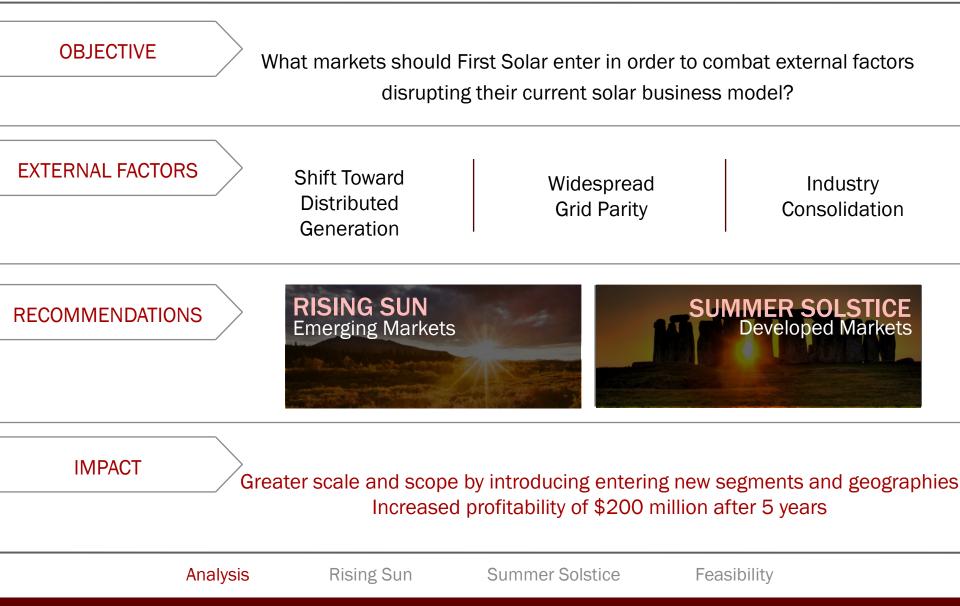
1) DISTRIBUTED GENERATION

2) WIDESPREAD GRID PARITY

3) INDUSTRY CONSOLIDATION

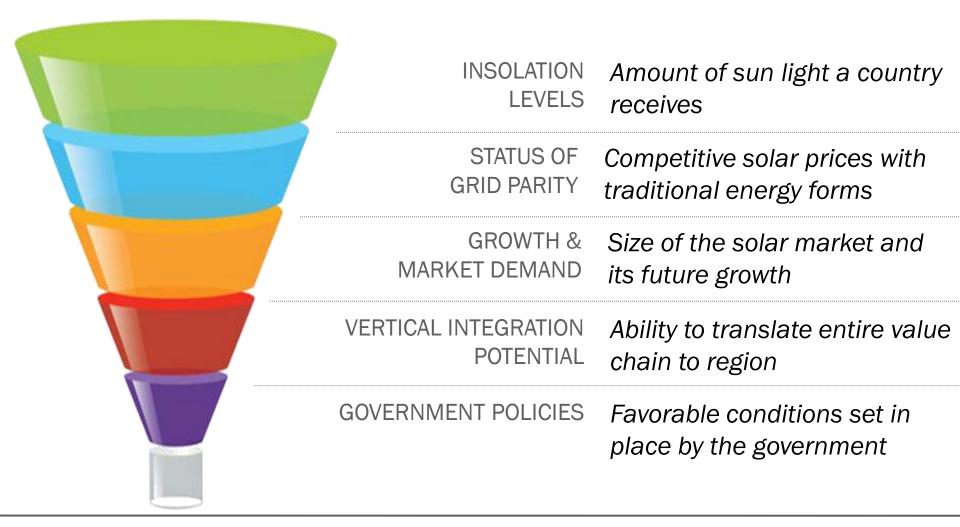
First Solar's competency in CdTe is **not suited** for the movement toward **onsite powe**r generation

Expand now while subsidies still available, or be locked out by competitors later on Focusing on downstream operations is a key drivers for growth


Analysis

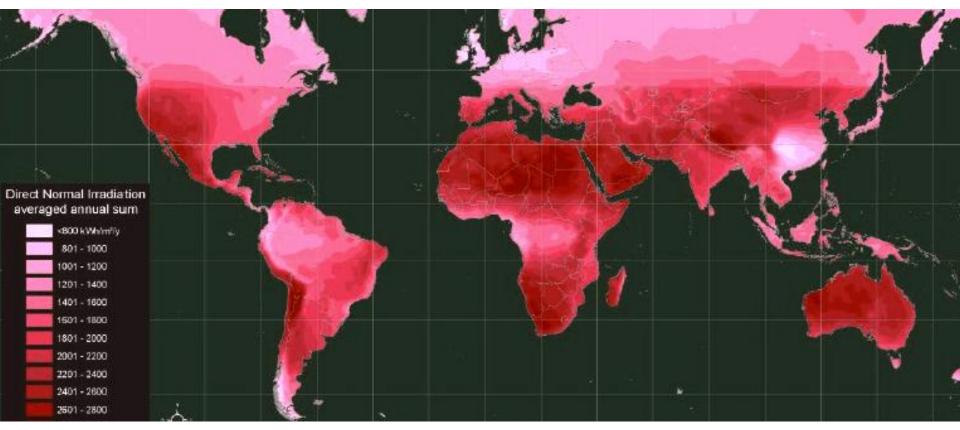
Rising Sun

Summer Solstice


Value Proposition

Criteria for New Markets

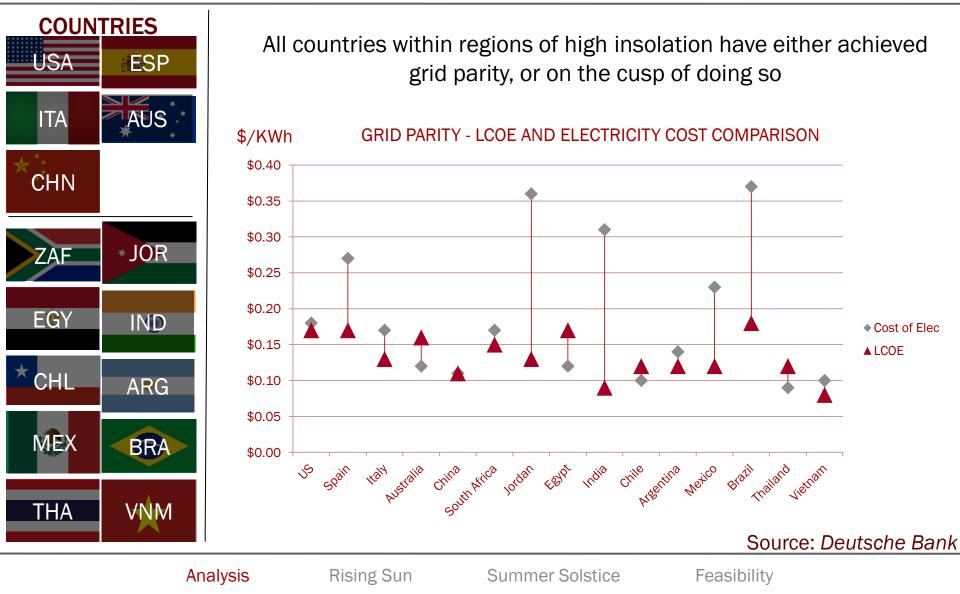
Analysis


Rising Sun

Summer Solstice

High Insolation, Most Efficient Markets

When selecting regions for First Solar to target, it is crucial to target markets that have high degrees of insolation, representing markets where solar PV works most efficiently


Source: NASA, DLR

Rising Sun

Summer Solstice

Grid Parity Correlated with Insolation

By examining recent solar capacity investment, First Solar can best examine which markets can produce the greatest returns.

DEVELOPED

```
USA
6.2 GW
SPAIN
118 MW
ITALY
1.4 GW
AUSTRALIA
830 MW
CHINA
11.8 GW
```

Source: GreenTech Media, EPIA

By examining recent solar capacity investment, First Solar can best examine which markets can produce the greatest returns.

DEVELOPE)
USA	
6.2 GW	
SPAIN	
118 MW	
ITALY	
1.4 GW	
AUSTRALIA	
CHINA	
11.8 GW	

Source: GreenTech Media, EPIA

Analysis

Rising Sun

Summer Solstice

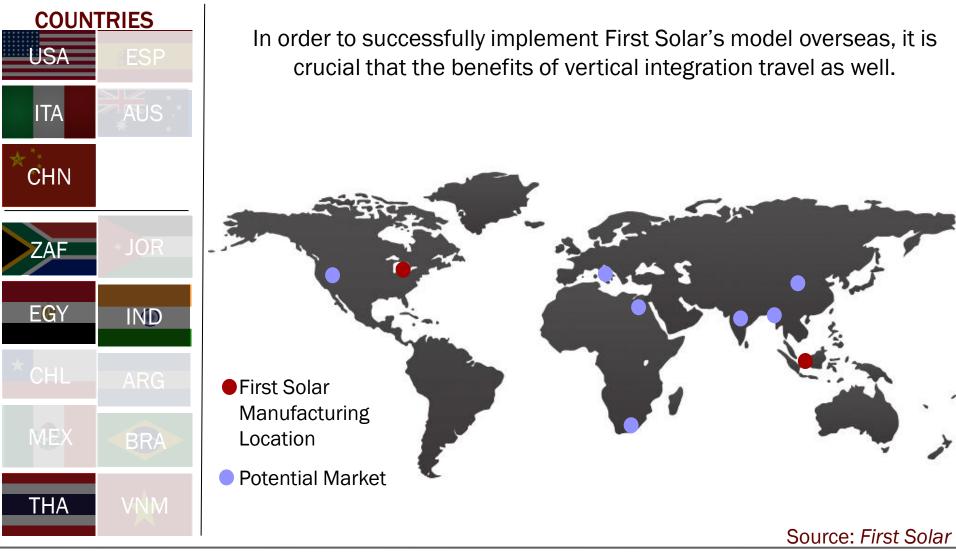
By examining recent solar capacity investment, First Solar can best examine which markets can produce the greatest returns.

DEVELOPED	EMERGINO	3
USA	SOUTH AFRICA	JORDAN
6.2 GW	600 MW	75 MW
SPAIN	EGYPT	INDIA
118 MW	500 MW	1 GW
ITALY	CHILE	ARGENTINA
1.4 GW	110 MW	20 MW
AUSTRALIA	MEXICO	BRAZIL
830 MW	70 MW	20 MW
CHINA	THAILAND	VIETNAM
11.8 GW	800 MW	320 MW
	Soι	arce: GreenTech Media, EPIA

Analysis

Rising Sun

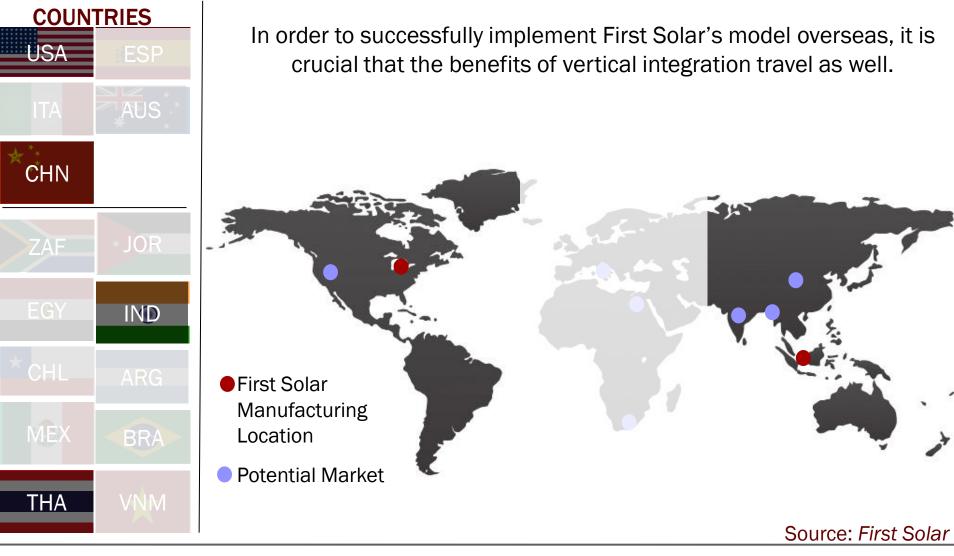
Summer Solstice



By examining recent solar capacity investment, First Solar can best examine which markets can produce the greatest returns.

	DEVELOPED	EMERGINO	3
	USA	SOUTH AFRICA	JORDAN
	6.2 GW	600 MW	75 MW
	SPAIN	EGYPT	INDIA
	118 MW	500 MW	1 GW
	ITALY	CHILE	ARGENTINA
	1.4 GW	110 MW	20 MW
	AUSTRALIA	MEXICO	BRAZIL
	830 MW	70 MW	20 MW
	CHINA	THAILAND	VIETNAM
	11.8 GW	800 MW	320 MW
		Sou	ırce: GreenTech Media, EPIA
Analys	is Rising Sun	Summer Solstice F	easibility

Vertical Integration, Most Advantage


Analysis

Rising Sun

Summer Solstice

Vertical Integration, Most Advantage

Analysis

Rising Sun

Summer Solstice

UNITED STATES

Anti dumping regulations that protect home market First Solar is already in the market, making it easy to further penetrate

COUNTRIES USA ESP ITA AUS CHN ZAF	 UNITED STATES Anti dumping regulations that protect home market First Solar is already in the market, making it easy to further penetrate 	 CHINA Recent shift away from large utility-scale solar projects Strong government subsidies lead to intense competition and price dumping
EGY	INDIA ≻ \$4B foreign investment	
* CHL ARG	from the US alone Feed-in-Tariff policy	
MEX	Government subsidies that total up to 30%	
THA	customer facing discounts	

Analysis

Rising Sun

Summer Solstice

COUNT USA ITA ** CHN ZAF	TRIES ESP AUS	 Anti dumping regulations that protect home market First Solar is already in the market, making it easy to further penetrate 	 CHINA Recent shift away from large utility-scale solar projects Strong government subsidies lead to intense competition and price dumping
EGY	IND	INDIA	THAILAND
* CHL	ARG	 \$4B foreign investment from the US alone Feed-in-Tariff policy 	 Government goal of 5 GW by 2020 Invested \$1.5 B in the
MEX	BRA	Government subsidies that total up to 30%	past year solely on solar ≻ Tax exemptions
THA	VNM	customer facing discounts	

Analysis

Rising Sun

Summer Solstice

COUN USA ITA CHN ZAF	TRIES ESP AUS	 UNITED STATES Anti dumping regulations that protect home market First Solar is already in the market, making it easy to further penetrate 	 CHINA Recent shift away from large utility-scale solar projects Strong government subsidies lead to intense competition and price dumping
EGY	IND	INDIA ≻ \$4B foreign investment	THAILAND ➤ Government goal of 5
* CHL	ARG	from the US alone Feed-in-Tariff policy	GW by 2020 ➤ Invested \$1.5 B in the
MEX	BRA	Government subsidies that total up to 30%	past year solely on solar Tax exemptions
THA	VNM	customer facing discounts	

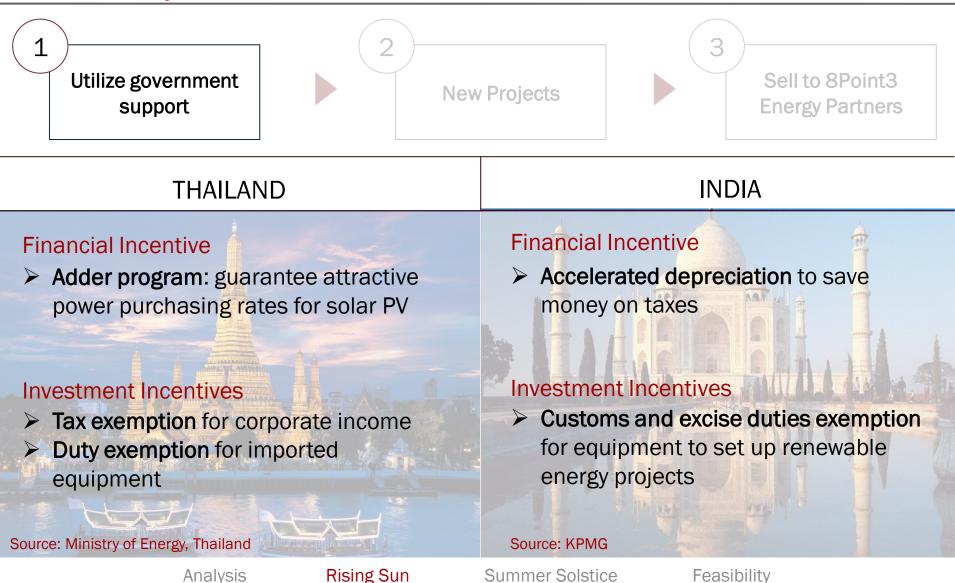
Analysis

Rising Sun

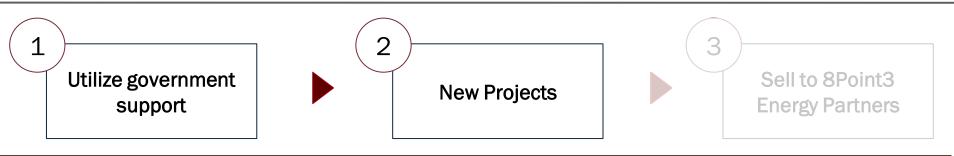
Summer Solstice

STRATEGY OVERVIEW First Solar should **enter Thailand and India** to leverage its current core competencies and then **reinvest** in next technology to focus **on US market**

ADDRESSING INDUSTRY TRENDS

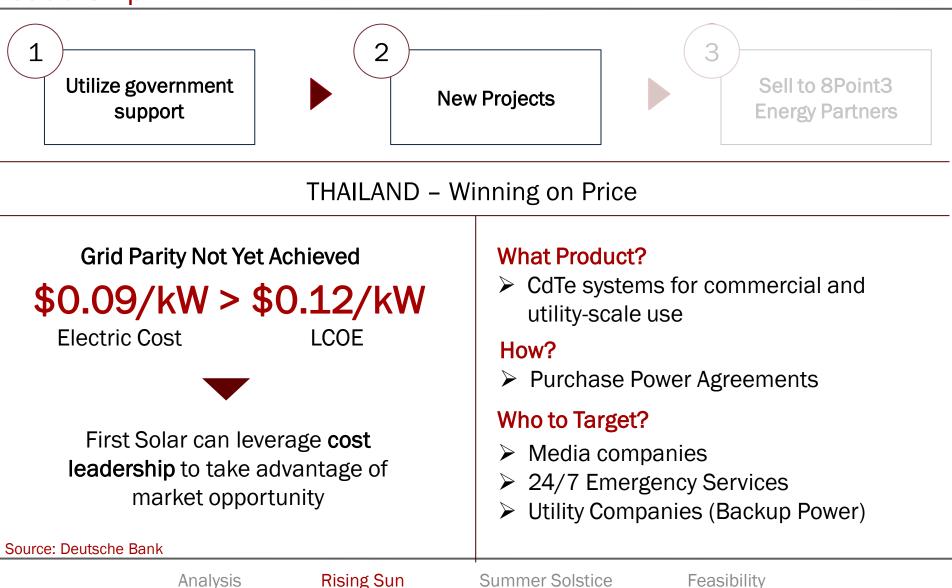

THAILAND	INDIA	UNITED STATES	
 Widespread Grid Paris Take advantage of subsidies/advantage of su	government ageous policies to penetrate new	 Distributed Generation Reinvest in R&D efforts in a better capture the distribut generation market currently dominated by C-Si cells 	ed

1) **RISING SUN**²⁾ SUMMER SOLSTICE


Stage 1: Leverage government policies to reduce market entry costs

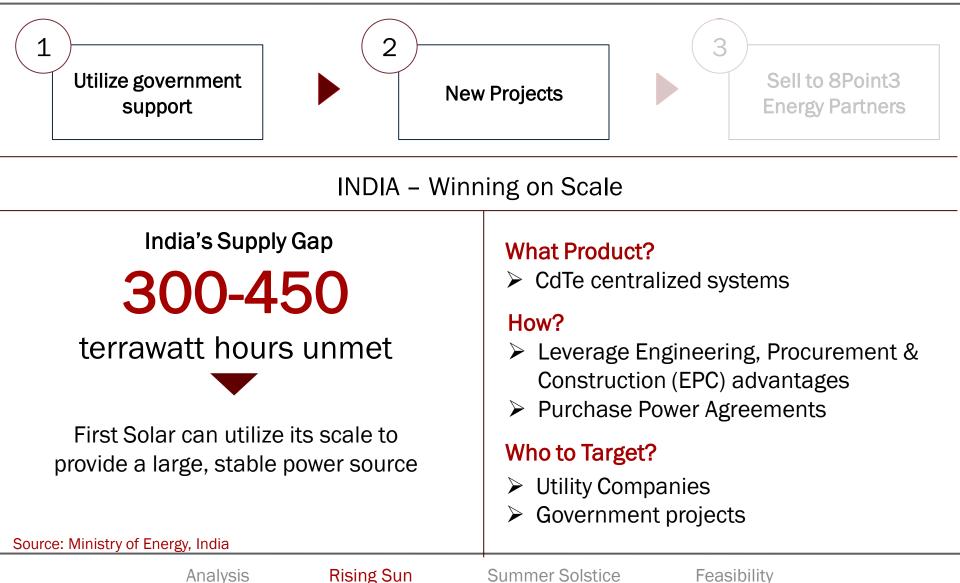
Stage 2: Drive new projects in Thailand through cost leadership

THAILAND – Winning on Price

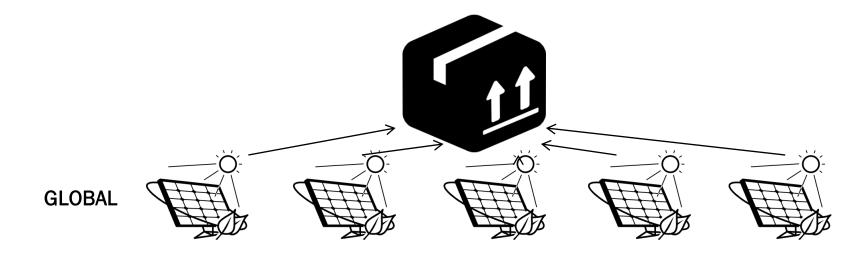


Rising Sun

Summer Solstice


Stage 2: Drive new projects in Thailand through cost leadership

Stage 2: Address India's Supply Gap with large scale



Stage 3: Bundle energy producing assets for sale to Yield Co

Analysis

Rising Sun

Summer Solstice

Stage 3: Bundle energy producing assets for sale to Yield Co

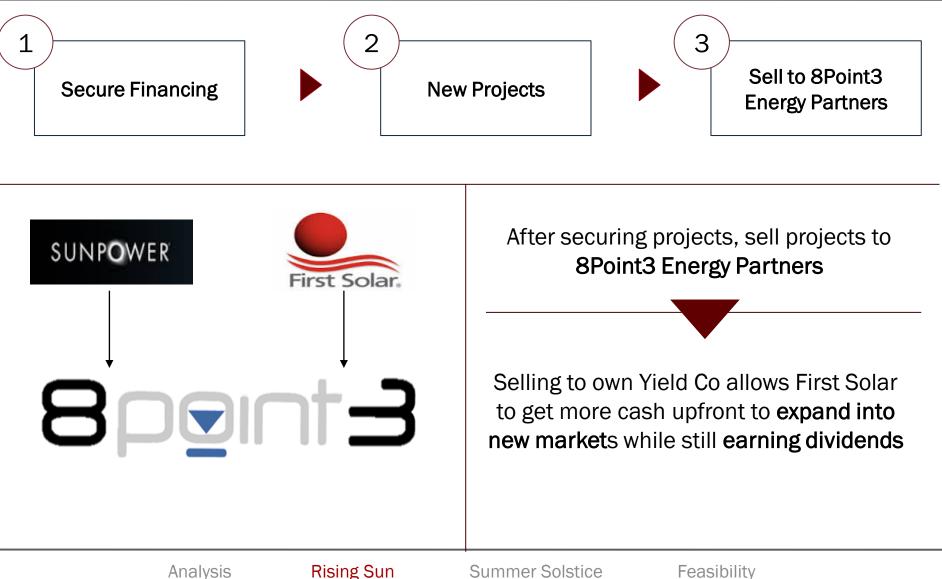
Analysis

Rising Sun

Summer Solstice

Stage 3: Bundle energy producing assets for sale to Yield Co

Rising Sun


Summer Solstice

Feasibility

Analysis

Yield Co sale generates upfront capital for immediate reinvestment

1) RISING 2) SUMMER SOLSTICE

Use cash to reinvest in technologies that will best serve DG markets

Trend towards distributed generation affects success in your largest market: the United States

Use money earned from Indian and Thailand markets to reinvest in R&D capabilities to serve DG market

Analysis

Rising Sun

Summer Solstice

Capture US market by reinvesting in R&D to maintain market leadership and **OVERVIEW** hedge against shifts towards distributed generation **CdTe improvement** 3rd generation cells PEROVSKITE SOLAR CELLS ROOM FOR GROWTH 32% 40% CHEAPER 21.5% Theoretical CdTe effciency **30%** MORE EFFICIENT Current CdTe efficiency Source: Institute of Electrical Engineers Source: Exeter University Continue to develop more efficient and Investing in the **next generation** of solar cost effective CdTe cells cells to compete in the future **Rising Sun** Summer Solstice Analysis Feasibility

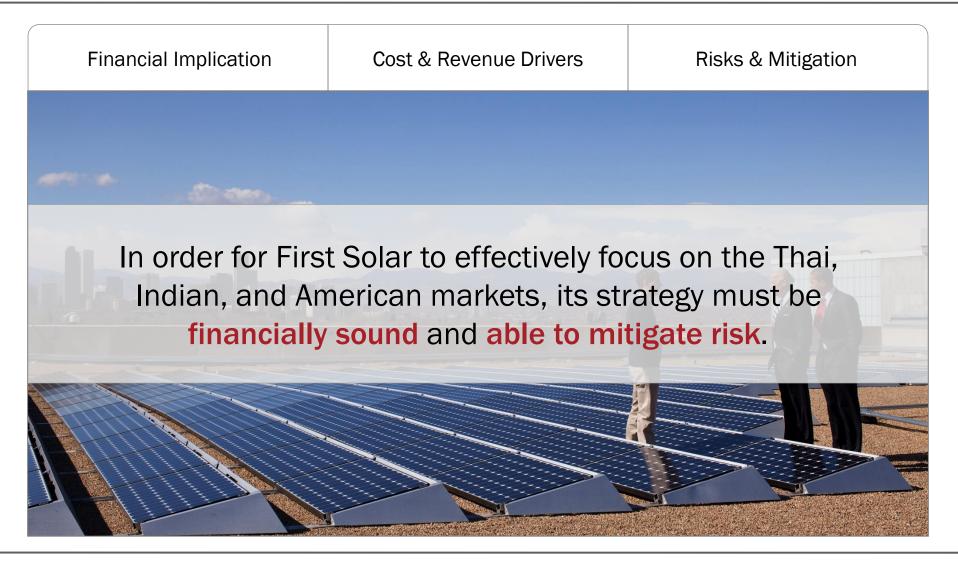
Entrance strategies into Thailand, India, and US have 3 key impacts

Competitiveness

Understand trends and leverage competencies to succeed in the industry

Growth

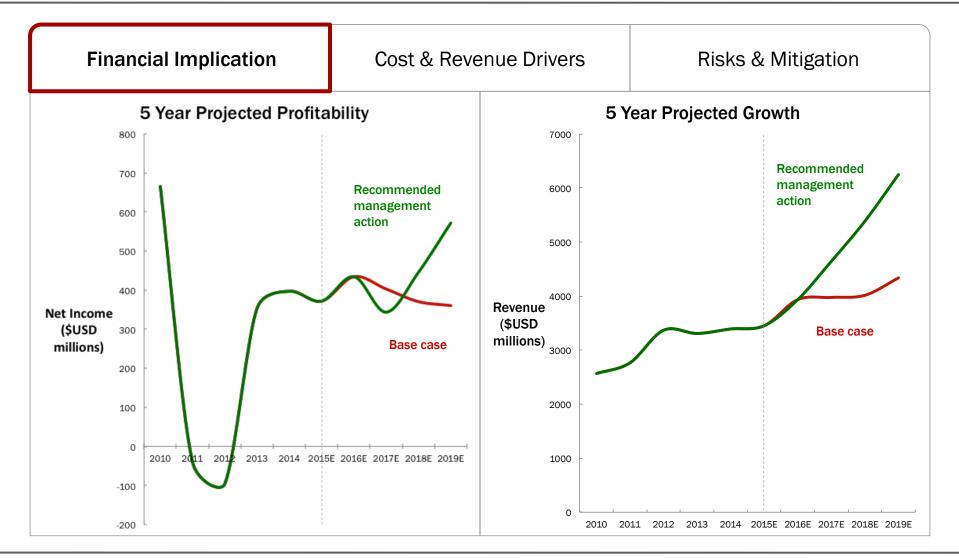
Diversify risks and enter markets with promising solar futures


Innovation

Staying ahead of the game and investing in the future of solar technology

Rising Sun

Summer Solstice



Analysis

Rising Sun

Summer Solstice

Analysis

Rising Sun

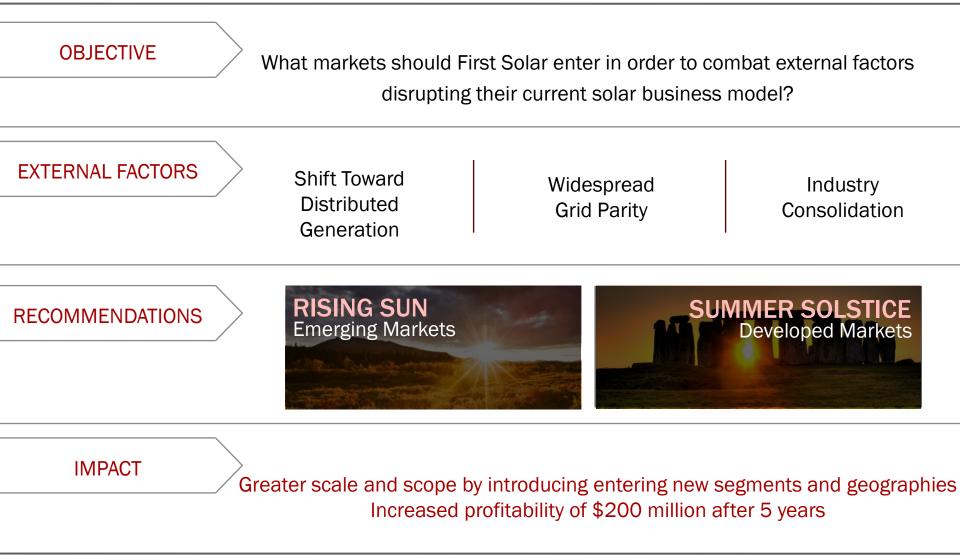
Summer Solstice

Financial Implication	Cost & Reve	nue Drivers	Risks & Mitigation
Revenue Drive	rs		Strategy Costs
Entering emerging market	s allows First	Costs will n	ot change dra <mark>stically when</mark>
Solar to develop a previo	usly waning		tering new markets
project pipellite (eee	199	Relationship	between research costs and
Shifting toward distribute	d generation	eventual cos	st savings is promising - we
capitalizes on growth in	developed	recommend	d doubling R&D to fund new
markets (incremental	200 MW)		technology
•	Imp	act	-

Geographically diverse project pipeline Increased profitability of \$200 million after 5 years Positions your company for full-scale growth in residential systems

Analysis

Rising Sun


Summer Solstice

Financial Implication	Cost & Revenue Drivers		Risks & Mitigation
1			2
Risk: Incumbent solar con Thailand and India attempt First Solar's bid	to undercut	C-Si on effi	olar cell emerges that beats ciency and First Solar has ed the wrong technology
Market your developmer arms aggressively to der reliability and speed of co	nonstrate		nether or not CdTe will ever new technology's efficiency
Lead with a loss leader stra market share initially as a ensure success in the	/ieldCo will		purchase the new technology competitors or partner to gain access

Value Proposition

Finding the Next Solar Advantage

Kevin Chang | Nicholyn Chen | Sida Lu | Kenneth Shih

APPENDIX

Trends

<u>Consolidation Trend</u> <u>Consolidation of Major Players</u> <u>Centralized vs Distributed</u> <u>Generation</u> <u>Grid Parity Costs</u> <u>No Need for Subsidies</u> The Impact of Scale

Technology

<u>C-Si vs Thin Film Comparison</u> <u>Viability of c-Si and CdTe</u> <u>C-Si is Tapering Off</u> <u>Further Improvements in CdTe</u> <u>Perovskite Cells</u> <u>3rd Generation Technology</u>

Geographic

PV Demand and Growth -Thailand PV Demand and Growth – India PV Demand and Growth – India Graph **Countries with Highest Electricity** Usage **Most Polluted Countries** Insolation in India Why Thailand Why Not Japan **US PV Instalations** US PV Installations – by Segment Chinese Market has Strong **Barriers** Unsubsidized Markets are Long Term Transportation Advantage in Vertical Integration

Yield Co

What is a Yield Co? How Yield Co Drives Value Who Else Has Done Yield Co How Sustain Yield Co Success

Financials Projected Revenue & Costs – Base Projected Revenue & Costs -Recommendations Financials – Revenue Assumptions Abroad Financials – Distributed Generation Financials – Base from Backlog Financials – Module Cost Reductions Financials – Cost Savings Assumptions

			Historical					Projected		
	2010	2011	2012	2013	2014	2015E	2016E	2017E	2018E	2019E
Total Revenue	2564	2766	3369	3309	3392	3451	3936	3976	4016	4337
Growth Over Prior Year	24.1%	7.9%	21.8%	-1.8%	2.5%	1.8%	14.1%	1.0%	1.0%	8.0%
Cost of Goods Sold	1379	1794	2516	2446	2565	2623	3031	3101	3172	3469
COGS %	53.8%	64.9%	74.7%	73.9%	75.6%	76.0%	77.0%	78.0%	79.0%	80.0%
Gross Profit	1185	972	853	863	827	828	905	875	843	867
Margin %	46.2%	35.1%	25.3%	26.1%	24.4%	24.0%	23.0%	22.0%	21.0%	20.0%
SG&A	3 20	413	281	270	254	242	276	278	281	304
% of Revenue	12.5%	14.9%	8.3%	8.2%	7.5%	7.0%	7 .0%	7.0%	7.0%	7.0%
R&D	P 95	F 141	I 132	I 134	F 144	184	157	159	161	173
% of Revenue	3.7%	5.1%	3.9%	4.1%	4.2%	4.0%	4.0%	4.0%	4.0%	4.0%
Other Expenses	1 9	3 4	F 8	3	5				-	
EBIT	751	385	432	455	424	403	472	437	402	390
Margin %	29.3%	13.9%	12.8%	13.8%	12.5%	11.7%	12.0%	11.0%	10.0%	9.0%
Interest Expense (Income)	(14)	(13)	1	(15)	(16)	(10)	(10)	(10)	(10)	(10)
EBT (Excluding Unusual Items)	765	398	430	470	440	413	482	447	412	400
EBT (Including Unusual Items)	762	(54)	(40)	378	427	413	482	447	412	400
Income Tax Expense (Benefit)	98	(14)	57	25	30	41	48	45	41	40
Tax Rate	12.8%	NA	13.1%	5.4%	6.8%	10.0%	10.0%	10.0%	10.0%	10.0%
Net Income (Excluding Unusual Items)	664	-40	-96	353	397	372	434	403	370	360
Margin %	25.9%	-1.4%	-2.9%	10.7%	11.7%	10.8%	11.0%	10.1%	9.2%	8.3%

			Historical					Projected		
(All figures in millions)	2010	2011	2012	2013	2014	2015E	2016E	2017E	2018E	2019E
Total Revenue	2564	2766	3369	3309	3392	3451	3936	4645	5388	6250
Growth Over Prior Year	24.1%	7.9%	21.8%	-1.8%	2.5%	1.8%	14.1%	18.0%	16.0%	16.0%
Cost of Goods Sold	1379	1794	2516	2446	2565	2623	3031	3577	4095	4688
COGS %	53.8%	64.9%	74.7%	73.9%	75.6%	76.0%	77.0%	77.0%	76.0%	75.0%
Gross Profit	1185	972	853	863	827	828	905	1068	1293	1563
Margin %	46.2%	35.1%	25.3%	26.1%	24.4%	24.0%	23.0%	23.0%	24.0%	25.0%
SG&A	3 20	4 13	281	270	254	242	276	325	377	438
% of Revenue	12.5%	14.9%	8.3%	8.2%	7.5%	7.0%	7.0%	7.0%	7.0%	7.0%
R&D	P 95	F 141	I 132	I 134	F 144	184	157	372	431	500
% of Revenue	3.7%	5.1%	3.9%	4.1%	4.2%	4.0%	4.0%	8.0%	8.0%	8.0%
Other Expenses	1 9	3 4	8	3	5			-		
EBIT	751	385	432	455	424	403	472	372	485	625
Margin %	29.3%	13.9%	12.8%	13.8%	12.5%	11.7%	12.0%	8.0%	9.0%	10.0%
Interest Expense (Income)	(14)	(13)	1	(15)	(16)	(10)	(10)	(10)	(10)	(10)
EBT (Excluding Unusual Items)	765	398	430	470	440	413	482	382	495	635
EBT (Including Unusual Items)	762	(54)	(40)	378	427	413	482	382	495	635
Income Tax Expense (Benefit)	98	(14)	57	25	30	41	48	38	49	64
Tax Rate	12.8%	NA	13.1%	5.4%	6.8%	10.0%	10.0%	10.0%	10.0%	10.0%
Net Income (Excluding Unusual Items)	664	-40	-96	353	397	372	434	343	445	572
Margin %	25.9%	-1.4%	-2.9%	10.7%	11.7%	10.8%	11.0%	7.4%	8.3%	9.1%
		·	·	·	·					-

200-250 MW in projects from Thailand, 700-800 MW in projects from India for years 2017, 2018, and 2019.

Given that the U.S. total market value of new installations was \$13.7 billion USD in 2013 and equated to 4.7 billion GW new capacity, we find that every GW equals approximately 2.9 billion USD. Taking into account the comparable costs of electricity across international markets, we see that the LCOE ratio is an indicator of how much energy is worth in another market.

Thailand's LCOE/US's LCOE = 0.12/0.17 = .706 India's LCOE/US's LCOE = 0.09/0.17 = .529		Thailand	India
11010 - 5 - 5000 - 5 - 50000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000	Current Solar PV Capacity (GW)	1.3	3
	5-Year Goal	5	5 20
That means every GW in Thailand is worth \$2.05 billion USD	Implied Growth Every Year	0.74	3.4
Every GW in India is worth \$1.53 billion USD	Assume 25% market share	0.2	0.85

Assuming 250 MW in projects from Thailand every year, realized at a constant, delayed rate over the next few years equals \$500 million in revenue for 2017-2019 Assuming 700-800 MW in projects from India, 1.2 billion in revenue for 2017-2019

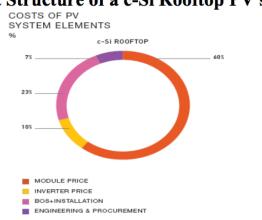
Market value of PV installations in 2013 in the U.S. were \$13.7 billion. The U.S. also installed 4.7 GW of energy. Source: GTM Research/SEIA U.S. Solar Market Insight

- According to NREL, the U.S. is shifting toward distributed generation to avoid a loss of energy during transmission. Given that the U.S. is set to grow at 22% over the next five years, this accounts for approximately 2.5 GW in projects every year (BCC Research).
- If they can claim even 200 MW in projects every year (an easy task, considering their existing market share and the evergreen, growing market, it will greatly supplement their revenue.

Exhibit 1: First Solar project backlog as February 24

Backlog - Project Sold/Under Contract						
Project/Location	Size MWac	PPA	Owner/Purchaser	Completion	% Complete	% Rev recognized
McCoy, California	250	SCE	NextEra	2016	2.0%	2.0%
Silver State South, Nevada	250	SCE	NextEra	2016	9.0%	9.0%
Southern California	175	Various	Various	2016	0.0%	0.0%
AGL, Australia	155	AGL	AGL	2015	43.0%	43.0%
Imperial Solar Energy Center West, California	150	SDG&E	Tenaska	2016	2.0%	2.0%
Taylor, Georgia	130	Various	Southern Company	2016	0.0%	0.0%
Decatur Parkway Solar, Georgia	83	Georgia Power	Southern Company	2015	0.0%	0.0%
California (Multiple Locations) (9)	79	PG&E/ SCE	Various	2015	95.0%	95.0%
Copper Mountain 2, Nevada	58	PG&E	Sempra	2015	58.0%	58.0%
Shams Ma'an, Jordan	53	NEPCO	Various	2016	0.0%	0.0%
Seville, California	52	Seville Solar	Seville Solar	2015	0.0%	0.0%
CID Solar and Cottonwood, California	43	PG&E / Marin Clean Energy	EDF Renewable Energy	2015	55.0%	55.0%
Elm City, North Carolina	40	UOG	Duke	2015	0.0%	0.0%
PNM3, New Mexico	23	UOG	PNM	2015	77.0%	77.0%
Total	1,541				247	247

FSLR projects Not Sold/Not Contracted (with executed PPA)

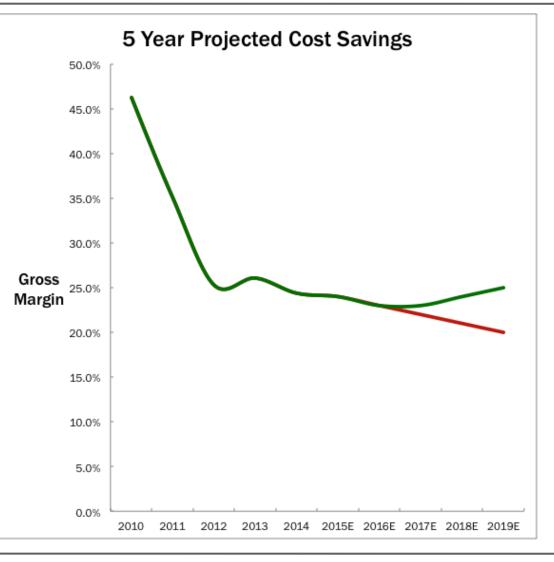

as of Feb 24						
Project/Location	Size MWac	PPA	Fully Permitted	Completion	% Complete	
Tribal Solar, California	310	SCE	No	2019	10.0%	
Stateline, California	300	SCE	Yes	2016	15.0%	
California Flats, California	280	PG&E / Apple	No	2016	0.0%	incl Apple deal
Moapa, Nevada	250	LADWP	Yes	2015	14.0%	
India (Multiple Locations)	145	TSSPDCL / APSPDCL	No	2016	0.0%	
Luz del Norte, Chile	141	Merchant plant	Yes	2015	23.0%	
North Star, California	60	PG&E	Yes	2015	42.0%	
Cuyama, California	40	PG&E	Yes	2015/2016	9.0%	
Kingbird, California	40	SCPPA / City of Pasadena	Yes	2015	5.0%	
Lost Hills, California	32	PG&E	Yes	2015	76.0%	
Portal Ridge, California	31	PG&E/SCE	Yes	2015	0.0%	
Barilla, Texas	30	Merchant plant	Yes	2015	73.0%	
Total	1,659				220	

Source: Company data, Credit Suisse estimates

Key takeaway: Base case assumption is that 2017-2019 project pipeline is not yet robust due to sole focus on American market

These reductions in price have come as a result of more experience, technological developments, process optimization and volume increases among other things. The initial investment cost in modules and BOS components represents the overwhelming majority of costs for PV generated electricity during the system's 25-30 year lifetime, as such costs as maintenance and control are virtually negligible. Typically, module cost reductions have outpaced BOS cost reductions (with the exception of inverters which have followed a similar learning curve to that of modules). This is usually because BOS components, such as labor costs and commodity prices (steel, aluminum, copper) have not depreciated over time. A typical cost structure for a PV system is illustrated in Figure 17. In this rooftop installation, module costs represent 60% of the total system cost, whereas the BOS component amounts to 40%⁵¹.

Cost Structure of a c-Si Rooftop PV system


Figure 17: This figure illustrates the various components of a PV system and their relative weights in terms of cost.⁵²

Arguably the most crucial factor for reduction of total system costs is through enhancement of module efficiency. Solar cell efficiency may be defined as the percentage of solar radiation that is converted into electricity. By increasing the cell efficiency, a solar cell will produce more electrical power per unit surface area. As a consequence, this will in turn decrease material costs and BOS costs per unit of electricity produced. An efficiency increase of 1% has been said to result in a reduction of up to 10% of the total system's cost/ W_p^{53} . Costs measured in $$/W_p$ are an effective portrayal of costs as they take into consideration the efficiency of cells. In this respect, PV producers can be interpreted as manufacturing a certain level of efficiency (at a certain cost), rather the more ambiguously defined "solar panel".

1% technology increase in efficiency can result in 10% reduction in system COGS.

If we assume the current trend of greater efficiency can increase by 50% due to doubling R&D (to 1.50% per year greater efficiency for CdTe), First Solar would re-buffer its gross margin.

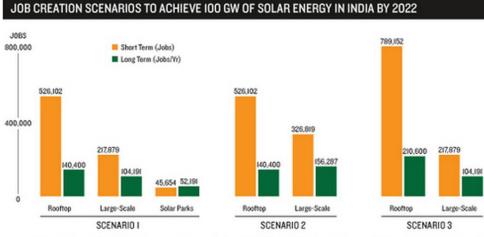
PHOTON News

Markets

12/23/2014 - Markets

18,517 subscribers

Thailand tops 1.3 GW of PV capacity


Thailand reached a cumulative installed solar capacity of 1.32 GW, according to local newspaper The Nation, which cites a statement from the country's Energy Minister Narongchai Akrasanee. According to official statistics, Thailand had 823.4 MW of installed PV power at the end of 2013 This means that the country has added new PV systems with a combined capacity of approximately 500 MW in 2014. Furthermore, the minister said that there are still 296 MW of PV plants under construction and 1.01 GW that have applied for a FIT contract. Moreover, the minister said that Thailand is now targeting

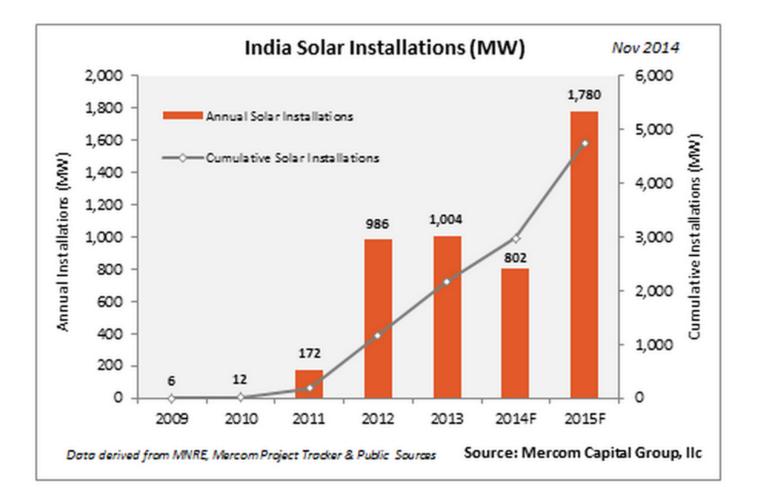
between 4.5 GW and 5 GW of installed solar capacity by 2021. The previous target was of 3.8 GW. © PHOTON

Thailand's projected goal is 5 GW by 2021, which equates to a 3.7 GW demand for solar PV over the next 4.5 years ~ 800 MW in projects a year. Assuming First Solar is able to replicate its 25% (3 GW/12 GW) market share in the U.S., this equates to 200 MW in Thailand alone.

SCENARIO I, 40 GW ROOFTOP, 40 GW LARGE-SCALE PROJECTS, 20 GW

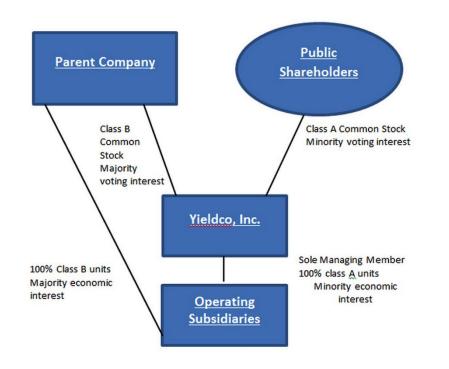
SOLAR PARKS, reflects the job creation potential based on MNRE's recently proposed mix of project types to achieve the IOO GW goal. If this recent policy shift towards creating vast solar parks is realized, with a balanced approach that also encompasses a significant amount of rooftop solar, this scenario could create a potential 789,000 short-term FTE and 296,000 long-term FTE jobs, totaling more than I,080,000 FTE jobs by 2022.

SCENARIO 2, 40 GW ROOFTOP, 60 GW LARGE-SCALE


PROJECTS, shows the short and long-term job creation potential if the government's policy approach focused primarily on 5-10 MW grid-connected large-scale projects rather than solar parks. This scenario create a potential 850,000 short-term FTE and 296,000 long-term FTE jobs, totaling more than 1,140,000 FTE jobs by 2022.

SCENARIO 3, 60 GW ROOFTOP, 40 GW LARGE-SCALE

PROJECTS, shows the job creation potential if rooftop solar is prioritized and makes up the majority of solar installations by 2022. Of the three scenarios presented, this scenario reflects the most jobs potentially created due to its focus on labor-intensive rooftop solar. This scenario could create a potential I,000,000 short-term FTE and 310,000 long-term FTE jobs, totaling more than I,310,000 FTE jobs by 2022. India is shooting for 100 GW in solar capacity by 2022. Of the 100 GW, 20 GW will be fully focused on large solar parks, while the majority of the remainder will be distributed generation. 20 GW equates to 17 GW in capacity over the next 6 years, ~2.8 GW in solar installations every year. Assuming 25% again, approximately 700 MW in projects every year.


In addition, by entering India, your company can further tap into the distributed generation markets and capitalize on at least another GW in projects (staggered after utility scale).

A YieldCo is spin-off company that bundles various renewable energy projects in order to generate predictable cash flows. The projects originate from the majority owner of the YieldCo, the parent company (i.e. First Solar). YieldCos will pay shareholders out any of its a dividend to avoid double taxations, similar to MLPs or REITS.

- YieldCos allow companies to tap into public markets, which can then be used to pay down expensive debt or fund new projects at rates lower than those available through tax equity (private) financing, which usually exceed 8%.
- The generation of cash can also theoretically be used to drive further innovation or cost cutting measures.
- YieldCos have rights-of-first-offer to buy projects from the Operating Company.
- Source: NREL.gov

Only companies that are large industry players and have the capital necessary to buy third party assets or develop projects themselves can form YieldCos. They can be pure solar or a mix of renewable energy assets. They can also be comprised of small to medium sized distributed generation projects (Terraform) or purely large utility scale projects (NRG).

	Portfolio	Renewable Assets (MW-electric)	Total Assets (MW)	Total Capital Raised	Market Cap	Yield (Annual)
NRG Yield, Inc.	Conventional, solar, wind, thermal	1401	2984	\$840 million	\$3.9 billion	5.45%
Pattern Energy Group, Inc.	Wind	1932	1932	\$938 million	\$1.9 billion	6.25 %
Abengoa Yield Plc.	Solar, wind, conventional, electric transmission	710	1010; 1018 mi	\$829 million	\$3.0 billion	3.6 %
TransAlta Renewables, Inc.	Wind,hydro	1378	1378	C\$346million (US\$323)	\$1.3 billion	7.5 %
NextEra Energy Partners, LP	Wind, Solar	989	989	\$406 million	\$3.1 billion	6.25%
TerraForm Power, Inc.	Solar	523	523	\$500 million	\$3.0 billion	4.5% (expected)

Companies must fuel these YieldCos with more projects – again in line with our idea of needing more projects to grow your business. A larger pipeline allows for sustained success, and your company should continue to find distributed projects (with SunPower) and large scale utility projects.

(Source: NREL.gov)

Global Production Shifts

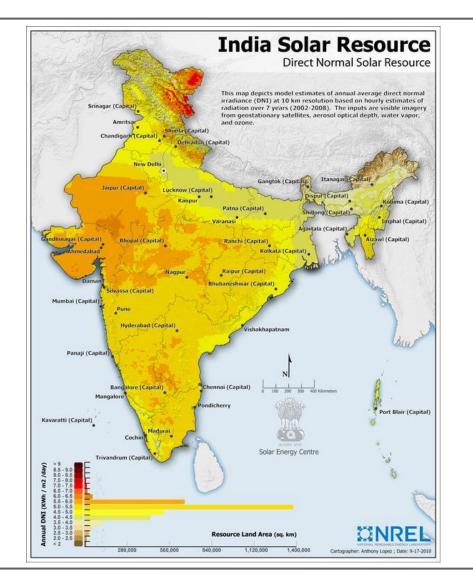
The creation of incentives for solar installations in several countries around 2004 led many companies to enter the PV industry. More recently, the industry has entered a phase of rapid consolidation on a global basis. According to an estimate by SEIA, the number of module manufacturing facilities in the United States shrank from 51 in 2011 to 38 in 2013. Chinese cell production has been relatively flat because demand in some countries has declined and prices have weakened (see **Figure 5**). According to the International Energy Agency, there are now fewer than 100 Chinese PV module and cell manufacturers, compared with more than 300 companies in 2011.⁵⁹ By the end of 2017, China aims to reduce the number to 10 major producers that would supply 70%-80% of domestic demand.⁶⁰ Price pressures have driven a number of manufacturers, including the U.S. firms Evergreen Solar and Solyndra and the German companies Solon and Q-Cells, into bankruptcy, and have led others to lay off workers.

Ten firms now control nearly half of global solar module production. Of these, six are based in China, two in Japan, one in South Korea, and one in the United States (see **Table 3**).

			(2013)		
Rank	Manufacturer	Location of Headquarters	% of Module Production	Founded	Plant Locations (current and planned)
I	Yingli ^a	China	8.3%	1998	China
2	Trina Solar	China	6.7%	1997	China
3	Sharp ^b	Japan	5.4%	1959	Japan
4	Canadian Solar ^c	China	4.9%	2001	China
5	Jinko Solar	China	4.6%	2006	China
6	Renesola	China	4.5%	2005	China
7	First Solar ^d	United States	4.2%	1990	United States, Malaysia
8	Hanwha SolarOne ^e	South Korea	3.3%	2004	China, Malaysia, Germany
9	JA Solar	China	3.2%	2005	China
10	Kyocera	Japan	3.1%	1996	Japan, China, Czech Republic, Mexico

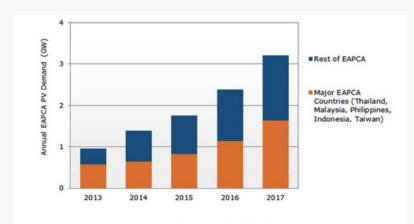
Table 3. Top PV Solar Module Manufacturers by Production

Countries with the largest amount of electricity consumption


RANK	COUNTRY	(KWH)	DATE OF INFORMATION	
1	CHINA	4,831,000,000,000	UP TO NOVEMBER 2013	
2	UNITED STATES	3,883,000,000,000	2011 EST.	
3	EUROPEAN UNION	2,798,000,000,000	2012 EST.	
4	RUSSIA	1,037,000,000,000	2013 EST.	
5	JAPAN	859,700,000,000	2012 EST.	
6	INDIA	757,900,000,000	2011 EST.	
7	GERMANY	582,500,000,000	2012 EST.	
8	CANADA	551,600,000,000	2011 EST.	
9	BRAZIL	478,800,000,000	2011 EST.	
10	KOREA, SOUTH	472,200,000,000	2011 EST.	
11	FRANCE	462,900,000,000	2012 EST.	
12	UNITED KINGDOM	320,800,000,000	2011 EST.	
13	ITALY	307,200,000,000	2012 EST.	
14	SPAIN	243,900,000,000	2011 EST.	
15	SOUTH AFRICA	234,200,000,000	2012 EST.	
16	MEXICO	232,300,000,000	2011 EST.	
17	AUSTRALIA	226,900,000,000	2011 EST.	
18	TAIWAN	224,800,000,000	2011 EST.	
19	SAUDI ARABIA	211,600,000,000	2011 EST.	
20	TURKEY	187,100,000,000	2011 EST.	Source: Wo
21	IRAN	185,800,000,000	2011 EST.	Factbook
22	UKRAINE	175,300,000,000	2012 EST.	raccoon
23	THAILAND	169,400,000,000	2012 EST.	
24	INDONESIA	156,000,000,000	2011 EST.	

- 1. China
- 2. United States
- 3. Russia
- 4. India
- 5. Japan
- 6. Germany
- 7. Canada
- 8. United Kingdom
- 9. South Korea
- 10. Iran
- Source: Action for our Planet

Insolation in India



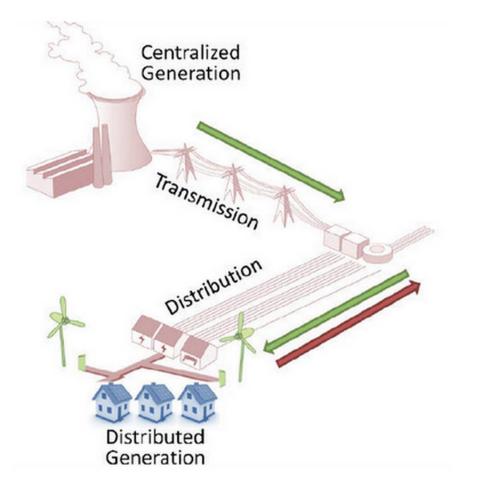
Jaipur could be viable due to the proximity to Delhi and the high insolation of the region.

Why Thailand?

Asia-Pacific and Central Asian nations will install more than 3,000 megawatts of photovoltaic power by 2017, up from 723 megawatts last year, according to a projection by NPD SolarBuzz, a New York-based market research firm. That's an annual growth rate of 28%, and the region will comprise 5% of global demand in 2017, up from 2% today.

Source: NPD Solarbuzz Emerging PV Markets: Asia Pacific and Central Asia Report

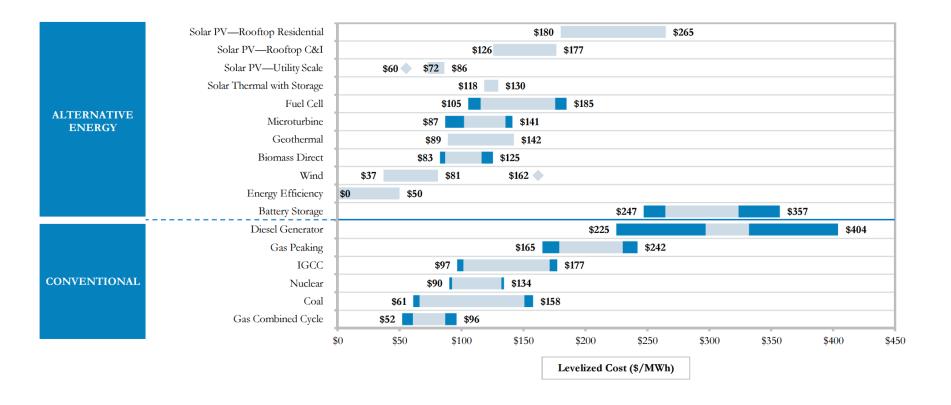
Of these countries, Thailand is poised to become the biggest photovoltaic market, according to the report, as it grapples with growing electricity demand and promotes policies to reduce the country's dependence on imported energy. Indonesia plans to install 1,000 megawatts by 2025, though that will still only be 0.3% of the country's energy production. Even impoverished Bangladesh has solar ambitions, with plans to put a million photovoltaic systems in villages not connected to the national power grid by 2016.


Solar: Japan METI announced cut to solar feed-in tariff rate

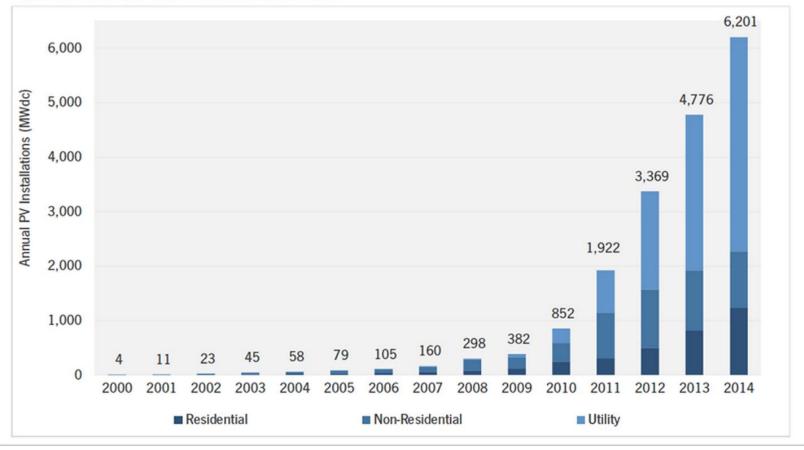
Sentiment Indicator : neutral

Posted by Mahesh Sanganeria on Thursday, March 19 2015, 10:27 AM ET

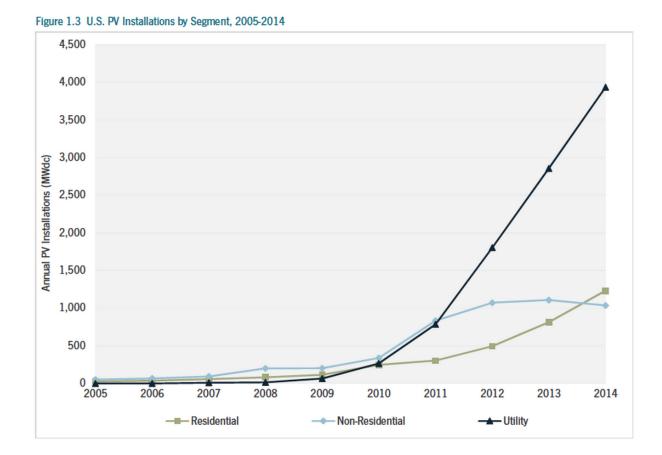
Overnight, Japan Ministry of Economy, Trade and Industry announced a cut to solar feed-in tariff rate. FiT rate for non-residential solar projects (projects larger than 10kw) will first be reduced to JPY29/kwh from current JPY 32/kwh level from April 1 to June 30. Starting July 1, the rate will be further cut to JPY 27/kwh. The length of the FiT payment remains at 20 years. For residential projects (projects smaller than 10kw), the FiT rate will decrease from current JPY 37/kwh to JPY33/kwh starting April 1 and will be effective for 10 years. In areas served by Hokkaido, Tohoku, Hokuriku, Chugoku, Shikoku, Kyushu and Okinawa, residential projects will enjoy a slightly higher FiT rate of JPY 35/kwh if the projects are required to install output control equipment due to curtailment. The Japanese announcement can be found *here* while the English translation is not yet available on METI website.



Levelized Cost of Energy Comparison—Sensitivity to Fuel Prices


Variations in fuel prices can materially affect the levelized cost of energy for conventional generation technologies, but direct comparisons against "competing" Alternative Energy generation technologies must take into account issues such as dispatch characteristics (e.g., baseload and/or dispatchable intermediate load vs. peaking or intermittent technologies)

Source: SEIA



US PV Installation by Segment

First Solar.

Source: SEIA

PROS of C-Si

High efficiency rate of 12%-24% High stability Ease of fabrication/manufacturing Very reliable High resistance to heat Lower installation (BOS) costs Silicon is more environmentally friendly

CONS of C-Si

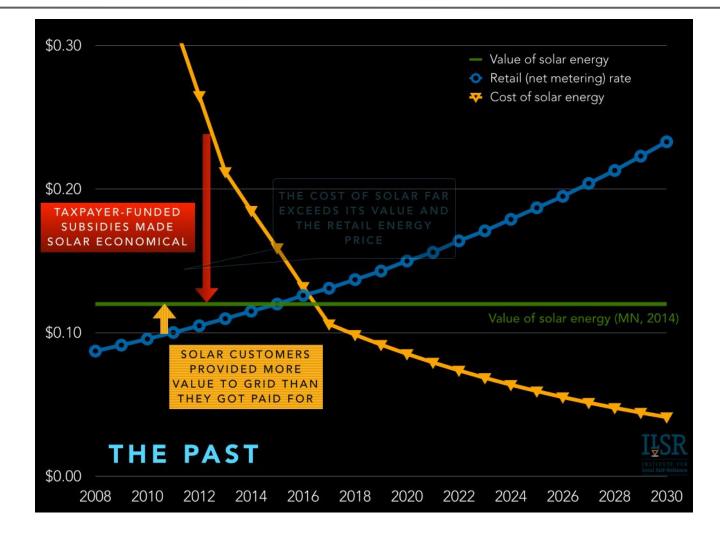
Rigid and fragile Most expensive solar cells in terms of upfront cost

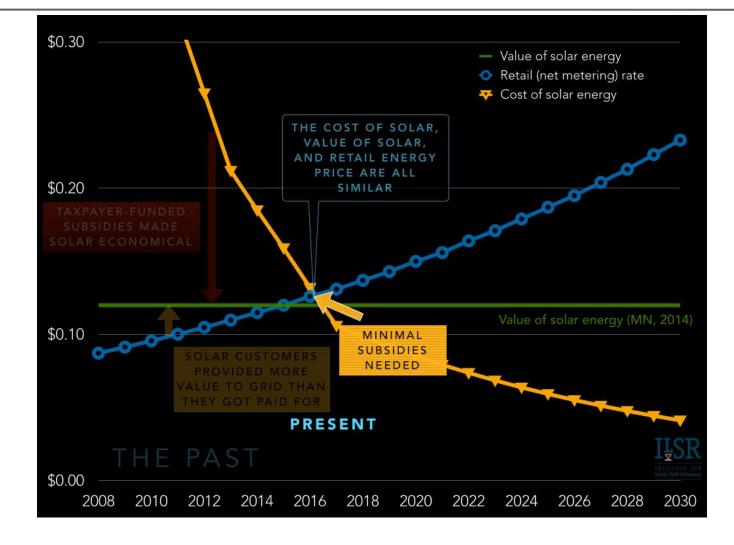
Source: http://electronicdesign.com/power-sources/what-s-difference-between-thin-film-and-crystalline-silicon-solar-panels

PROS of Thin Film

Less expensive Flexible and easier to handle Less susceptible to damage

CONS of C-Si


Lower efficiency, which can offset price advantages Require additional installation costs & expertise


No Need for Subsidies

No Need for Subsidies

"As of 2011, manufacturers in China accounted for 63 percent of all solar-panel production worldwide. But a detailed analysis of all costs associated with PV production shows that the main contributors to that country's **lower PV prices are economies of scale and well-developed supply chains** – not cheap labor."

Source: MIT

Rank	Company	Technology	MW-dc				
1	Yingli Green, China	c-Si	3,300				
2	Trina Solar, China	c-Si	2,600				
3	Canadian Solar, China	c-Si	1,894				
4	Sharp Solar, Japan	c-Si, Thin Film Si	1,865				
5	Jinko Solar, China	c-Si	1,800				
6	ReneSola, China	c-Si	1,750				
7	First Solar, USA	CdTe	1,600				
8	Hanwha Solar, China	a-Si	1,300				
9	Kyocera, Japan	c-Si	1,200				
10	10 JA Solar, China c-Si 1,200						
c-Si = Crystalline Silicon, a-Si = Amorphous Silicon, CdTe = Cadmium Telluride							

The 10 Largest Solar "Module" Manufacturers - 2013

Most of the largest solar module manufacturers are in China and could take away from First Solar's cost advantages enjoyed in other markets

Source: Solarbuzz

Additionally, China wants to restructure subsidies for smaller projects, which would further detract from First Solar's scale advantages.

Source: Bloomberg Business 2014

Unsubsidized solar market boom is occurring in European countries in household and commercial uses – these are competencies that First Solar must continue to develop in the future – C Si technologies are popular for these uses

Table 1: Economical solar self-production in % of total demand (2020E)

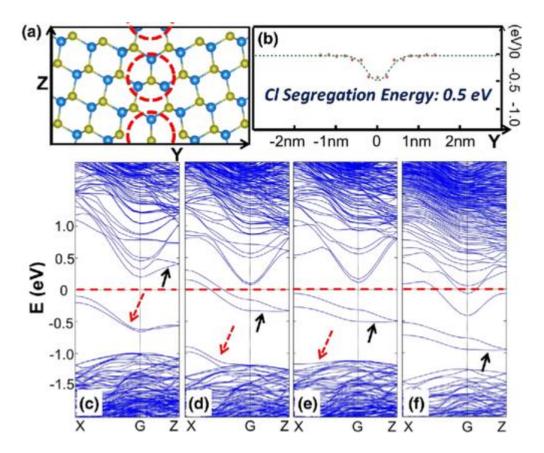

	Industry	Transport	Households	Commercial	Total
Germany	4%	0%	29%	18%	14%
France	0%	0%	5%	3%	3%
Italy	5%	0%	25%	28%	17%
Spain	5%	0%	21%	26%	18%

Source: UBS estimates

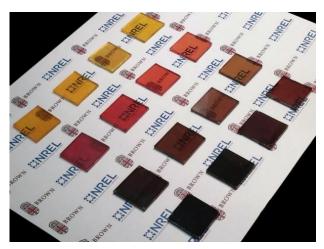
C-Si technology is tapering off, reaching upper bound

C-Si has only a theoretical maximum of 29% and is quickly tapering off in comparison to Cd-Te technology

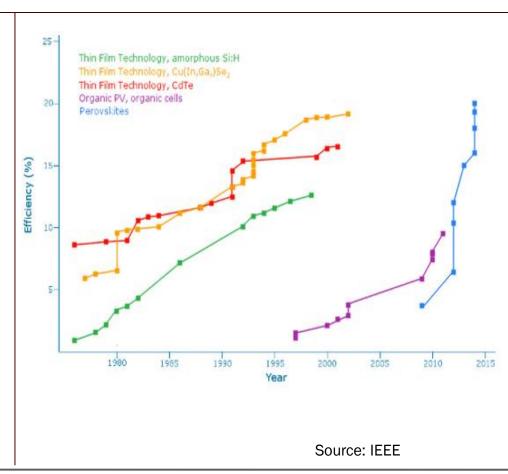
First Solar

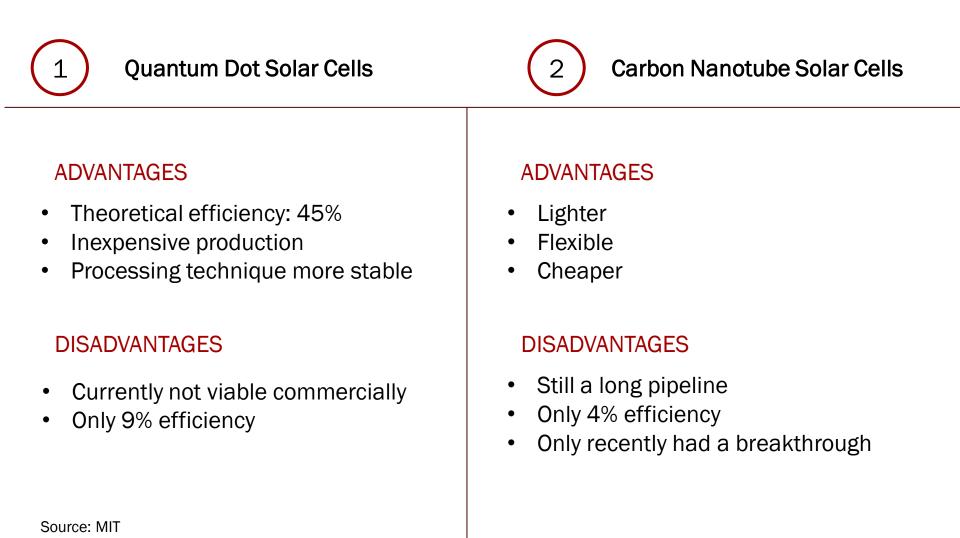

Is it really feasible for further efficiency improvements in CdTe?

"Grain-Boundary-Enhanced Carrier Collection in CdTe Solar Cells"


- Team discovered atom-scale grain boundaries (tiny defects)
- Chlorine substituting tellurium atoms in grain boundaries that increase photovoltaic improvements, not worsen

As scientists understand this process, will be able to move even closer to theoretical efficiency (32%)




"Darling of the photovoltaic world"

- Can be stuck on windows and plastered on walls
- Do not need direct sunlight
- Efficiencies soared from 4% to 20% within 5 years
- Cheaper to make than silicon wafers

"International transport costs for finished modules are in the range of 1-3% of total value." This is extremely important in a highly price competitive industry

Source: Congressional Research Service – US Solar Manufacturing